Take an EXTRA 30% OFF any initial
Program purchase — limited time only!

Shop our products & programs

• Doctor-formulated
• Natural & effective
• 100% guaranteed
• Made in FDA-inspected labs

Menopause Weight Loss Combo

Menopause Weight Loss Combo

Starburst SAVE 26% with this combo


Just $59.00

Add to Cart

Your satisfaction is 100% guaranteed

Menopause Weight Loss Combo

If you’re gaining weight and have other menopausal symptoms like hot flashes, irritability, sleep issues and low energy, our Menopause Weight Loss Combo is the one-two punch you need. During menopause, women tend to gain more fat around the middle and have a harder time losing weight. We’ve combined Herbal Equilibrium, for menopause symptom relief and hormonal balance, with our powerful metabolic formula, M-Boost, for weight loss, cravings and metabolism support.

What you get with the Combo:

Herbal Equilibrium — our landmark supplement is formulated with a diverse array of herbal extracts to help relieve menopause symptoms caused by fluctuations in estrogen, testosterone and progesterone.

Herbal Equilibrium contains:

  • Black cohosh, red clover and kudzu — for hormonal balance, hot flashes and night sweats.
  • Passionflower, chasteberry, and wild yam — for irritability, anxiety and insomnia.
  • Ashwagandha — for hormonal balance and low libido.

M-Boost includes:

  • Meratrim® — this groundbreaking proprietary blend combines extracts of Indian sphaeranthus, a plant used widely in ayurvedic medicine, and mangosteen both of which appear to regulate the accumulation of fat and increase your body’s natural fat burning processes.
  • Green tea extract — helps stimulate calorie-burning, decreases body fat and contributes to optimal metabolism and weight loss.
  • Chromium — a mineral that helps balance glucose and maintain efficient insulin activity.
  • L-Carnitine L-Tartrate — an amino acid shown to help convert fat into energy, while playing a central role in energy production.

How to use:

For Herbal Equilibrium: we recommend taking two tablets per day — one with breakfast and one with dinner. This herbal supplement is formulated to reduce and relieve a broad spectrum of menopause symptoms within 30 days.

For M-Boost: we recommend taking just two tablets a day — one with breakfast or lunch and one at dinner. This weight loss supplement is formulated with ingredients that address fat accumulation and storage, cravings and lack of energy.

We recommend using both formulas until you have been symptom-free for at least 30 days. Within 60 days, you should notice a significant reduction in the frequency and severity of all of your symptoms. For best results, it’s essential to use both products together regularly every day as directed.

This Menopause Weight Loss Combo is intended to last a full 30 days.

These statements have not been evaluated by the Food and Drug Administration. This product is not intended to diagnose, treat, cure, or prevent any disease.
Menopause Weight Loss Combo Ingredients

Product References

Herbal Equilibrium references

Our Herbal Equilibrium is doctor-formulated to be complete, natural, bioavailable, and manufactured to pharmaceutical standards.

The following articles, reviews and studies, arranged in order of ingredient and recency, provide information concerning the clinical basis for using Herbal Equilibrium. Click on the ingredients listed below to review pertinent studies and articles.


Ashwagandha (Withania somnifera / W. ashwagandha)

Alam, N., et al. 2011. High catechin concentrations detected in Withania somnifera (ashwagandha) by high performance liquid chromatography analysis. BMC Complement. Altern. Med., 11, 65. URL: http://www.biomedcentral.com/1472-6882/11/65 (accessed 09.23.2011).

Kumar, A., et al. 2011. Utility of a multidisciplinary approach for genome diagnostics of cultivated and wild germplasm resources of medicinal Withania somnifera, and the status of new species, W. ashwagandha, in the cultivated taxon URL: http://www.springerlink.com/content/g12001h123tk2876/ (accessed 09.06.2011).

Sinha, S., et al. 2011. In vivo anti-tussive activity and structural features of a polysaccharide fraction from water extracted Withania somnifera. J Ethnopharmacol. 2011 Mar 24;134 (2), 510-513. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21182915 (accessed 09.23.2011).

“CONCLUSIONS: This study provides a scientific basis for the past and present ethnomedical uses of this plant.”

Dog, T. 2010. Smart Talk on supplements and botanicals: Ginseng and other adaptogenic herbs. Alt. Complement. Ther., 16 (1), 1–4. URL (paid access): http://www.liebertonline.com/doi/abs/10.1089/act.2010.16101 (accessed 01.17.2011).

Ven Murthy, M., et al. 2010. Scientific basis for the use of Indian ayurvedic medicinal plants in the treatment of neurodegenerative disorders: Ashwagandha. Cent. Nerv. Syst. Agents Med. Chem., 10 (3), 238-246. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20528765 (accessed 09.23.2011).

Yadav, B., et al. 2010. In vitro anticancer activity of the root, stem and leaves of Withania somnifera against various human cancer cell lines. Indian J. Pharm. Sci., 72 (5), 659-663. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3116319/?tool=pubmed (accessed 09.23.2011).

Widido, N., et al. 2007. Selective killing of cancer cells by leaf extract of Ashwagandha: Identification of a tumor-inhibitory factor and the first molecular insights to its effect. Clin. Cancer Res., 13 (7), 2298–2306. URL: http://clincancerres.aacrjournals.org/content/13/7/2298.long (accessed 02.23.2011).

Naidu, P., et al. 2006. Effect of Withania somnifera root extract on reserpine-induced orofacial dyskinesia and cognitive dysfunction. Phytother. Res., 20 (2), 140–146. URL: http://onlinelibrary.wiley.com/doi/10.1038/sj.bjp.0706122/full (accessed 02.23.2011).

Winters, M. 2006. Ancient medicine, modern use: Withania somnifera and its potential role in integrative oncology. Altern. Med. Rev., 11 (4), 269-277. URL (PDF): http://www.altmedrev.com/publications/11/4/269.pdf (accessed 09.23.2011).

“…As modern medicine continues to expand, so do the uses of botanical medicines. Withania somnifera shows great potential as a safe and effective antineoplastic agent.”

Kuboyama, T., et al. 2005. Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br. J. Pharmacol., 144 (7), 961–971. URL: http://onlinelibrary.wiley.com/doi/10.1038/sj.bjp.0706122/full (accessed 02.23.2011).

Misra, L., et al. 2005. Unusually sulfated and oxygenated steroids from Withania somnifera. Phytochemistry, 66, 2702–2707. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16293277 (accessed 02.23.2011).

[No authors listed.] 2004. Monograph. Withania somnifera. Altern. Med. Rev., 9 (2), 211–214. URL: http://www.thorne.com/altmedrev/.fulltext/9/2/211.pdf (accessed 02.23.2011).

Sreerekha, M., et al. 2004. Distribution of total withanolides in various plant parts of Ashwagandha (Withania somnifera) accessions as influenced by light and dark reaction cycle. J. Med. Aromatic Plant Sci., 26, 681–683. URL (abstract): (accessed 09.06.2011).

Bhattacharya, S., & Muruganandam, A. 2003. Adaptogenic activity of Withania somnifera: An experimental study using a rat model of chronic stress. Pharmacol. Biochem. Behav., 75, 547–555. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12895672 (accessed 02.23.2011).

Iuvone, T., et al. 2003. Induction of nitric oxide synthase expression by Withania somnifera macrophages. Life Sci., 72 (14), 1617-1625. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12551750 (accessed 01.25.2011).

Ilayperuma, I., et al. 2002. Effect of Withania somnifera root extract on the sexual behaviour of male rats. Asian J. Androl., 4, 295–298. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12508132 (accessed 02.23.2011).

Rajpal, V. 2002. Standardization of botanicals. New Delhi: Eastern Publishers.

Abdel–Magied, E., et al. 2001. The effect of aqueous extracts of Cynomorium coccineum and Withania somnifera on testicular development in immature Wistar rats. J. Ethnopharmacol., 75 (1), 1–4. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11282435 (accessed 02.23.2011).

Dhuley, J. 2001. Nootropic-like effect of Ashwagandha (Withania somnifera L.) in mice. Phytother Res., 15 (6), 524–528. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11536383 (accessed 02.23.2011).

Jain, S., et al. 2001. Neuroprotective effects of Withania somnifera Dunn. in hippocampal sub-regions of female albino rat. Phytother. Res., 15 (6), 544–548. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11536389 (accessed 02.23.2011).

Singh, B., et al. 2001. Adaptogenic activity of a glyco-peptido-lipid fraction from the alcoholic extract of Trichopus zeylanicus Gaertn. Phytomedicine, 8, 283–291. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11515718 (accessed 02.23.2011).

Singh, G., et al. 2001. Adaptogenic activity of a novel, withanolide-free aqueous fraction from the roots of Withania somnifera Dunn. Phytother. Res., 15 (4), 311–318. URL (PDF): http://onlinelibrary.wiley.com.prxy3.ursus.maine.edu/doi/10.1002/ptr.858/pdf (accessed 02.24.2011).

Battacharya, S., et al. 2000. Anxiolytic-antidepressant activity of Withania somnifera glycowithanolides: An experimental study. Phytomedicine, 7 (6), 463–469. URL: http://www.ncbi.nlm.nih.gov/pubmed/11194174 (accessed 01.25.2011).

Dhuley, J. 2000. Adaptogenic and cardioprotective action of ashwagandha in rats and frogs. J. Ethnopharmacol., 70 (1), 57–63. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/10720789 (accessed 02.23.2011).

Mishra, L-C., et al. 2000. Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): A review. Altern. Med. Rev., 5 (4), 334–346. URL (PDF): http://www.thorne.com/altmedrev/.fulltext/5/4/334.pdf (accessed 02.23.2011).

Archana, R., & Namasivayam, A. 1999. Antistressor effect of Withania somnifera. J. Ethnopharmcol., 64 (1), 91–93. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/10075127 (accessed 01.26.2011).

Rege, N.-N., et al. 1999. Adaptogenic properties of six rasayana herbs used in Ayurvedic medicine. Phytother Res., 13 (4), 275–291. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/10404532 (accessed 02.23.2011).

Schauss, A., et al. 1998. Therapeutic applications of Withania somnifera (Ashwagandha) — popular ayurvedic botanical medicine. Nat. Med. J., 1, 16–19.

Schliebs, R., et al. 1997. Systemic administration of defined extracts from Withania somnifera (Indian Ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAnergic markers in rat brain. Neurochem. Int., 30 (2), 181–190. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/9017665 (accessed 02.23.2011).

al-Hindawi, M., et al. 1992. Anti-granuloma activity of Iraqi Withania somnifera. J. Ethnopharmacol., 37 (2), 113–116. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/143685 (accessed 02.23.2011).

Mehta, A., et al. 1991. Pharmacologic effects of Withania somnifera root extract on GABAA receptor complex. Indian J. Med. Res., 94, 312–315. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/1660034 (accessed 02.23.2011).

Singh, N., et al. 1982. Withania somnifera (Ashwagandha), a rejuvenating herbal drug which enhances survival during stress (an adaptogen). Int. J. Crude Drug Res., 20, 29–35.


Black cohosh (Cimicifuga / Actaea racemosa)

Jiang, B., et al. 2011. Phytochemical fingerprinting to thwart black cohosh adulteration: A 16 Actaea species analysis. Phytochem. Anal. [Epub ahead of print.] URL (abstract): http://onlinelibrary.wiley.com/doi/10.1002/pca.1285/abstract (accessed 03.14.2011).

Shams, T., et al. 2010. Efficacy of black cohosh-containing preparations on menopausal symptoms: A meta-analysis. Alt. Ther., 16 (1), 36–44. URL: http://www.ncbi.nlm.nih.gov/pubmed/20085176 (accessed 01.08.2010).

Einbond, L., et al. 2009. Actein activates stress- and statin-associated responses and is bioavailable in Sprague–Dawley rats. Fundam. Clin. Pharmacol., 23 (3), 311–3212. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19527300 (accessed 02.02.2010).

Geller, S., et al. 2009. Safety and efficacy of black cohosh and red clover for the management of vasomotor symptoms: A randomized controlled trial. Menopause, 16 (6), 1156–1166. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19609225 (accessed 12.11.2009).

Palacio C., et al. 2009. Black cohosh for the management of menopausal symptoms: A systematic review of clinical trials. Drugs Aging, 26 (1), 23–36. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19102512 (accessed 01.30.2009).

Wong, V., et al. 2009. Current alternative and complementary therapies used in menopause. Gynecol. Endocrinol., 25 (3), 166–174. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19347706 (accessed 12.11.2009).

Borelli, F., & Ernst, E. 2008. Black cohosh (Cimicifuga racemosa) for menopausal symptoms: A systematic review of its efficacy. Pharmacol. Res., 58 (1), 8-14. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18585461 (accessed 01.30.2009).

Ju, Y., et al. 2008. A dietary supplement for female sexual dysfunction, Avlimil, stimulates the growth of estrogen-dependcnt breast tumors (MCF-7) implanted in ovariectomized athymic nude mice. Food Chern. Toxicol., 46, 310-320. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17919800 (accessed 01.04.2010).

Mahady, G., et al. 2008. United States Pharmacopeia review of the black cohosh case reports of hepatotoxicity. Menopause, 15 (4 Pt. 1), 628-638. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18340277 (accessed 12.11.2009).

Rachón, D., et al. 2008. Effects of black cohosh extract on body weight gain, intra-abdominal fat accumulation, plasma lipids and glucose tolerance in ovariectomized Sprague-Dawley rats. Maturitas, 60 (3–4), 209–215. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18691839 (accessed 01.04.2010).

Reed, S., et al. 2008. Vaginal, endometrial, and reproductive hormone findings: Randomized, placebo-controlled trial of black cohosh, multibotanical herbs and dietary soy for vasomotor symptoms: The Herbal Alternatives for Menopause (HALT) study. Menopause, 15 (1), 51–58. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18257142 (accessed 12.11.2009).

Kanadys, W., et al. 2008. [Efficacy and safety of black cohosh (Actaea/Cimicifuga racemosa) in the treatment of vasomotor symptoms — review of clinical trials.] Ginekol. Pol., 79 (4), 287–296. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18592868 (accessed 01.30.2009).

Wuttke, W., et al. 2008. Phytoestrogens: Endocrine disrupters or replacement for hormone replacement therapy? Maturitas, 61 (1–2), 159–170. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19434888 (accessed 12.11.2009).

Bai, W., et al. 2007. Efficacy and tolerability of a medicinal product containing an isopropanolic black cohosh extract in Chinese women with menopausal symptoms: A randomized, double blind, parallel-controlled study versus tibolone. Maturitas. [Epub ahead of print.]

Cheema, D., et al. 2007. Non-hormonal therapy of post-menopausal vasomotor symptoms: A structured evidence-based review. Arch. Gynecol. Obstet., 276 (5), 463–469. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17593379 (accessed 01.04.2010).

Chu, W. et al. 2007. Association between CYP3A4 genotype and risk of endometrial cancer following tamoxifen use. Carcinogenesis, 28 (10), 2139–2142. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17434921 (accessed 06.26.2007).

Meyer, S. et al. 2007. Cutaneous pseudolymphoma induced by Cimicifuga racemosa. Dermatology, 214 (1), 94–96. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17191056 (accessed 01.18.2011).

Nisslein, T. & Freudenstein, J. 2007. Coadministration of the aromatase inhibitor formestane and an isopropanolic extract of black cohosh in a rat model of chemically induced mammary carcinoma. Planta Med., 73 (4), 318–322. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17354167 (accessed 06.27.2007).

Rebbeck, T. et al. 2007. A retrospective case-control study of the use of hormone-related supplements and association with breast cancer. Int. J. Cancer., 120 (7), 1523-1528. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17205521 (accessed 06.27.2007).

Ruhlen, R., et al. 2007. Black cohosh does not exert an estrogenic effect on the breast. Nutr. Cancer, 59 (2), 269–277. URL (abstract): http://www.leaonline.com/doi/abs/10.1080/01635580701506968 (accessed 11.28.2007).

Spangler, L., et al. 2007. The effects of black cohosh therapies on lipids, fibrinogen, glucose and insulin. Maturitas, 57 (2), 195–204. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17275226 (accessed 01.04.2010).

Walji, R., et al. 2007. Black cohosh (Cimicifuga racemosa [L.] Nutt.): Safety and efficacy for cancer patients. Support. Care Cancer, 15 (8), 913–921. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17602247 (accessed 12.11.2009).

Zepelin, H. et al. 2007. Isopropanolic black cohosh extract and recurrence-free survival after breast cancer. Int. J. Clin. Pharmacol. Ther., 45 (3), 143–154. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17416109 (accessed 06.26.2007).

Carroll, D. 2006. Nonhormonal therapies for hot flashes in menopause. Am. Fam. Physician, 73 (3), 457–464. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16477892 (accessed 12.11.2009).

Li, J., & Yu, Z. 2006. Cimicifugae rhizoma: From origins, bioactive constituents to clinical outcomes. Curr. Med. Chem., 13 (24), 2927–2951. URL: (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17073639 (accessed 02.23.2011).

Minciullo, P., et al. 2006. Muscle damage induced by black cohosh (Cimicifuga racemosa). Phytomedicine, 13, 115–118. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16360941 (accessed 02.23.2011).

Newton, K., et al. 2006. Treatment of vasomotor symptoms of menopause with black cohosh, multibotanicals, soy, hormone therapy, or placebo: A randomized trial. Ann. Intern. Med., 145, 869–879. URL: (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17179056 (accessed 02.23.2011).

Letters to the editor. 2007. Ann. Int. Med., 147 (5), 347. URL (PDF): http://www.annals.org/content/147/5/347.1.full.pdf+html (accessed 10.17.2007).

Pockaj, B. et al. 2006. Phase III double-blind, randomized, placebo-controlled crossover trial of black cohosh in the management of hot flashes: NCCTG Trial N01CC1. J. Clin. Oncol., 24 (18), 2836–2841. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16782922 (accessed 06.27.2007).

Radowicki, S., et al. 2006. [Effectiveness and safety of the treatment of menopausal syndrome with Cimicifuga racemosa dry extract.] Ginekol. Pol., 77 (9), 678–683. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17219796 (accessed 02.23.2011).

Raus, K., et al. 2006. First-time proof of endometrial safety of the special black cohosh extract (Actaea or Cimicifuga racemosa extract) CR BNO 1055. Menopause, 13 (4), 678–691. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16837890 (accessed 02.23.2011).

Wuttke, W., et al. 2006. Effects of black cohosh (Cimicifuga racemosa) on bone turnover, vaginal mucosa, and various blood parameters in postmenopausal women: A double-blind, placebo-controlled, and conjugated estrogens-controlled study. Menopause, 13 (2), 185–196. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16645532 (accessed 02.23.2011).

Frei-Kleiner, S., et al. 2005. Cimicifuga racemosa dried ethanolic extract in menopausal disorders: A double-blind placebo-controlled clinical trial. Maturitas, 51, 397–404. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16039414 (accessed 02.23.2011).

Low Dog, T. 2005. Menopause: A review of botanical dietary supplements. Am. J. Med., 118 (Suppl. 12B), 98–108. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16414334 (accessed 12.11.2009).

Mahady, G. 2005. Black cohosh (Actaea/Cimicifuga racemosa): Review of the clinical data for safety and efficacy in menopausal symptoms. Treat. Endocrinol., 4 (3), 177–184. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15898823 (accessed 02.23.2011).

Nappi, R., et al. 2005. Efficacy of Cimicifuga racemosa on climacteric complaints: A randomized study versus low-dose transdermal estradiol. Gynecol. Endocrinol., 20, 30–35. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15969244 (accessed 02.23.2011).

Ulbricht, C., & Basch, E., Eds. 2005. Natural Standard Herb & Supplement Reference: Evidence-based Clinical Reviews. Natural Standard Research Collaboration. NY: Elsevier Mosby.

Vermes, G., et al. 2005. The effects of Remifemin on subjective symptoms of menopause. Adv. Ther., 22 (2), 148–154. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16020404 (accessed 02.24.2011).

Viereck, V., et al. 2005. Black cohosh: Just another phytoestrogen? Trends Endocrinol. Metab., 16 (5), 214-221. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15927480 (accessed 01.25.2011).

Pockaj, B., et al. 2004. Pilot evaluation of black cohosh for the treatment of hot flashes in women. Cancer Invest., 22 (4), 515–521. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15565808 (accessed 02.24.2011).

Cohen, S., et al. 2004. Autoimmune hepatitis associated with the use of black cohosh: A case study. Menopause, 11, 575–577. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15356412 (accessed 02.24.2011).

Nisslein, T., & Freudenstein, J. 2004. Concomitant administration of an isopropanolic extract of black cohosh and tamoxifen in the in vivo tumor model of implanted RUCA-I rat endometrial adenocarcinoma cells. Toxicol. Lett., 150 (3), 271–275. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15110078 (accessed 06.26.2007).

Lontos, S., et al. 2003. Acute liver failure associated with the use of herbal preparations containing black cohosh. Med. J. Aust., 179, 390–391. URL: http://www.mja.com.au/public/issues/179_07_061003/letters_061003_fm-2.html (accessed 02.24.2011).

Bland, J. 2003. Position on black cohosh safety. Metagenics, Inc. URL: http://www.metaproteomicslabs.com/position_papers/black%20cohosh%20position%20paper.pdf (accessed 01.25.2011).

Hernández Muñoz, G., & Pluchino, S. 2003. Cimicifuga racemosa for the treatment of hot flushes in women surviving breast cancer. Maturitas, 44 (Suppl. 1), S59–S65. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12609560 (accessed 09.13.2010).

Low Dog, T., et al. 2003. Critical evaluation of the safety of Cimicifuga racemosa in menopause symptom relief. Menopause, 10 (4), 299-313. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12851513 (accessed 09.13.2010).

Seidlová–Wuttke, D., et al. 2003. Evidence for selective estrogen receptor modulator activity in a black cohosh (Cimicifuga racemosa) extract: Comparison with estradiol17b. Eur. J. Endocrinol., 149 (4), 351–362. URL (PDF): http://eje-online.org/cgi/reprint/149/4/351 (accessed 02.24.2011).

Wuttke, W., et al. 2003. Phytoestrogens: Endocrine disrupters or replacement for hormone replacement therapy? Maturitas, 44 (Suppl. 1), S9–S20. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12609555 (accessed 02.24.2011).

Wuttke, W., et al. 2003. The Cimicifuga preparation BNO 1055 vs. conjugated estrogens in a double-blind placebo-controlled study: Effects on menopause symptoms and bone markers. Maturitas, 44 (Suppl. 1), S67–S77. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12609561 (accessed 02.24.2011)

[No authors listed.] 2003. Monograph. Cimicifuga racemosa. Altern. Med. Rev., 8 (2), 186-189. URL (PDF): http://www.altmedrev.com/sobi2.html?sobi2Task=dd_download&fid=193 (accessed 01.25.2011).

Bodinet, C., & Freudenstein, J. 2002. Influence of Cimicifuga racemosa on the proliferation of estrogen receptor-positive human breast cancer cells. Breast Cancer Res. Treat., 76 (1), 1-10. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12408370 (accessed 01.25.2011).

Liske, E., et al. 2002. Physiological investigation of a unique extract of black cohosh (Cimicifugae racemosae rhizoma): A 6-month clinical study demonstrates no systemic estrogenic effect. J. Women’s Health Gend. Based Med., 11, 163–174. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11975864 (accessed 02.24.2011).

Mahady, G. et al. 2002. Black cohosh: an alternative therapy for menopause? Nutr. Clin. Care, 5 (6), 283-289. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12557811 (accessed 06.26. 2007).

Winterhoff, H., et al. 2002. [Pharmacologic and clinical studies using Cimicifuga racemosa in climacteric complaints.] Wien Med. Wochenschr., 152 (15–16), 360–363. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12244879 (accessed 02.24.2011).

Whiting, P., et al. 2002. Black cohosh and other herbal remedies associated with acute hepatitis. Med. J. Aust., 177, 440–443. URL: http://www.mja.com.au/public/issues/177_08_211002/whi10119_fm.html (accessed 2.24.2011).

Wuttke, W., et al. 2002. Phytoestrogens for hormone replacement therapy? J. Steroid Biochem. Mol. Biol., 83 (1–5), 133–147. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12650710 (accessed 09.16.2010).

Zierau, O. et al. 2002. Antiestrogenic activities of Cimicifuga racemosa extracts. J. Steroid Biochem. Mol. Biol., 80 (1), 125–130. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11867271 (accessed 06.26.2007). URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11867271 (accessed 06.26.2007).

Jacobson, J., et al. 2001. Randomized trial of black cohosh for the treatment of hot flashes among women with a history of breast cancer. J. Clin. Oncol., 19 (10), 2739–2745. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11352967 (accessed 06.27. 2007).

Duker, E., et al. 1991. Effects of extracts from Cimicifuga racemosa on gonadotropin release in menopausal women and ovariectomized rats. Planta Med., 57 (5), 420–424. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/1798794 (accessed 06.27.2007).

McAllister, J., & Hornsby, P. 1987. TPA inhibits the synthesis of androgens and cortisol and enhances the synthesis non-17 alpha-hydroxylated steroids in cultured human adrenocortical cells. Endocrinology, 121 (5), 1908–1910.


Chastetree berry (Vitex agnus–castus)

[No author.] 2009. Vitex agnus-castus. Monograph. Alt. Med. Rev., 14 (2), 67–70. URL (PDF): http://www.altmedrev.com/sobi2.html?sobi2Task=dd_download&fid=32 (accessed 01.26.2011).

Reed, S., et al. 2008. Vaginal, endometrial, and reproductive hormone findings: Randomized, placebo-controlled trial of black cohosh, multibotanical herbs and dietary soy for vasomotor symptoms: The Herbal Alternatives for Menopause (HALT) study. Menopause, 15 (1), 51–58. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18257142 (accessed 12.11.2009).

Hu, Y., et al. 2007. Anti-nociceptive and anti-hyperprolactinemia activities of Fructus Viticis and its effective fractions and chemical constituents. Phytomedicine, 14 (10), 668-674. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17350238 (accessed 07.16.2007).

Rotem, C., & Kaplan, B. 2007. Phyto-Female Complex for the relief of hot flushes, night sweats and quality of sleep: Randomized, controlled, double-blind pilot study. Gynecol. Endocrinol., 23 (2), 117-122. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17454163 (accessed 07.06.2007).

Webster, D., et al. 2006. Activation of the mu-opiate receptor by Vitex agnus-castus methanol extracts: Implication for its use in PMS. J. Ethnopharmacol., 106 (2), 216-221. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16439081 (accessed 07.16.2007).

Tandon, V., et al. 2006. Vitex negundo Linn. (VN) leaf extract as an adjuvant therapy to standard anti-inflammatory drugs. Indian J. Med. Res., 124 (4), 447-450. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17159267 (accessed 07.16.2007).

Villasenor, I., & Lamadrid, M. 2006. Comparative anti-hyperglycemic potentials of medicinal plants. J. Ethnopharmacol., 104 (1-2), 128-131. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16253452 (accessed 07.16.2007).

Daniele, et al., 2005. Vitex agnus castus: A systematic review of adverse events. Drug Saf., 28, 319–332.

Natural Standard Research Collaboration. 2005. Chasteberry. In C. Ulbricht & E. Basch (Eds.), Natural standard herb and supplement reference: Evidence-based clinical reviews. NY: Mosby.

Roemheld–Hamm, B. 2005. Chasteberry. Am. Fam. Phys., 72 (5), 821-824. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16156340 (accessed 07.16.2007).

Zhang, C. et al. 2005. In vitro estrogenic activities of Chinese medicinal plants traditionally used for the management of menopausal symptoms. J. Ethnopharmacol., 98 (3), 295-300. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15814262 (accessed 07.16.2007).

Liu, et al. 2004. Isolation of linoleic acid as an estrogenic compound from the fruits of Vitex agnus-castus L. (chaste-berry). Phytomedicine, 11, 18–23. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/14974442 (accessed 02.24.2011).

Aron, D., et al. 2004. Hypothalamus and pituitary gland, 125–1260. In F. Greenspan & D. Gardner (Eds.), Basic & clinical endocrinology. Columbus, OH: McGraw–Hill.

Atmaca, M., et al. 2003. Fluoxetine versus Vitex agnus castus extract in the treatment of premenstrual dysphoric disorder. Hum. Psychopharmacol., 18 (3), 191–195. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12672170 (accessed 07.16.2007).

Blumenthal, et al. 2003. The ABC clinical guide to herbs. Austin, TX: American Botanical Council.

Chopin, L. 2003. Vitex agnus castus essential oil and menopausal balance: A research update [Complementary Therapies in Nursing and Midwifery, 8 (2003), 148-154]. Complement. Ther. Nurs. Midwifery, 9 (3), 157-160. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12852933 (accessed 07.16.2007).

Dharmasiri, M., et al. 2003. Anti-inflammatory and analgesic activities of mature fresh leaves of Vitex negundo. J. Ethnopharmacol., 87 (2-3), 199-206. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12860308 (accessed 07.16.2007).

Girman, A., et al. 2003. An integrative medicine approach to premenstrual syndrome. Am. J. Obstet. Gynecol., 188 (5 Suppl.), S56-S65. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12748452 (accessed 07.16.2007).

Jarry, H., et al. 2003. Evidence for estrogen receptor beta-selective activity of Vitex agnus-castus and isolated flavones. Planta Med., 69, 945–947.

Lucks, B. 2003. Vitex agnus castus essential oil and menopausal balance: A research update [Complementary Therapies in Nursing and Midwifery, 8 (2003) 148-154]. Complement. Ther. Midwifery, 9 (3), 157-160. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12852933 (accessed 07.16.2007).

Ohyama, K., et al. 2003. Cytotoxicity and apoptotic inducibility of Vitex agnus-castus fruit extract in cultured human normal and cancer cells and effect on growth. Biol. Pharm. Bull., 26 (1), 10-18. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12520164 (accessed 07.16.2007).

Wuttke, W., et al. 2003. Chaste tree (Vitex agnus-castus) — pharmacology and clinical indications. Phytomedicine, 10 (4), 248-357. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12809367 (accessed 07.16.2007).

Lucks, B., et al. 2002. Vitex agnus-castus essential oil and menopausal balance: A self-care survey. Complement. Ther. Nurs. Midwifery, 8, 148–154. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12353616 (accessed 01.26.2011).

Liu, J., et al. 2001. Evaluation of estrogenic activity of plant extracts for the potential treatment of menopausal symptoms. J. Agric. Food Chem., 49 (5), 2472-2479. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11368622 (accessed 07.16.2007).

Schellenberg, 2001. Treatment for the premenstrual syndrome with agnus castus fruit extract: Prospective, randomised, placebo controlled study. BMJ, 322, 134–137. URL: http://www.bmj.com/content/322/7279/134.long (accessed 02.24.2011).

Berger, et al. 2000. Efficacy of Vitex agnus castus L. extract Ze 440 in patients with pre-menstrual syndrome (PMS). Arch. Gynecol. Obstet., 264, 150–153. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11129515 (accessed 02.24.2011).

Halaska, M., et al. 1999. Treatment of cyclical mastalgia with a solution containing a Vitex agnus castus extract: Results of a placebo-controlled double-blind study. Breast, 8 (4), 175-181. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/14731436 (accessed 07.16.2007).

Lauritzen, et al. 1997. Treatment of premenstrual tension syndrome with Vitex agnus castus: Controlled double-blind study versus pyridoxine. Phytomedicine, 4, 183–189.

Cahill, D., et al 1994. Multiple follicular development associated with herbal medicine. Human Reprod., 9, 1469–1470. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/7989506 (accessed 02.24.2011).

Jarry, H., et al. 1994. In vitro prolactin but not LH and FSH release is inhibited by compounds in extracts of Agnus castus: Direct evidence for a dopaminergic principle by the dopamine receptor assay. Exp. Clin. Endocrinol., 102, 448–454. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/7890021 (accessed 02.24.2011).

Milewicz, A., et al. 1993. [Vitex agnus castus extract in the treatment of luteal phase defects due to latent hyperprolactinemia. Results of a randomized placebo-controlled double-blind study.] Arzneim.–Forsch./Drug Res., 43, 752–756. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/8369008 (accessed 10.26.2011).


Kudzu (Pueraria mirifica)

Rountree, R. 2010. Roundoc Rx: Phytoestrogens. Altern. Complement. Ther., 16 (1), 5–10. URL: http://www.liebertonline.com/doi/abs/10.1089/act.2010.16110 (accessed 09.21.2010).

Boonchird, C., et al. 2009. Differential binding with ERalpha and ERbeta of the phytoestrogen-rich plant Pueraria mirifica. Braz. J. Med. Biol. Res.,43 (2), 195–200. URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2009007500026&lng=en&nrm=iso&tlng=en (accessed 01.05.2010).

Cherdshewasart, W., et al. 2009. The mutagenic and antimutagenic effects of the traditional phytoestrogen-rich herbs, Pueraria mirifica and Pueraria lobata. Braz. J. Med. Biol. Res., 42 (9), 816–823. URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-879X2009000900008&lng=en&nrm=iso&tlng=en (accessed 01.05.2010).

Manonai, J., et al. 2009. The effect of Pueraria mirifica on cytologic and urodynamic findings in ovariectomized rats. Menopause, 16 (2), 350–356. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19098688 (accessed 01.05.2010).

Cherdshewasart, W., & Sutjit, W. 2008. Correlation of antioxidant activity and major isoflavonoid contents of the phytoestrogen-rich Pueraria mirifica and Pueraria lobata tubers. Phytomedicine, 15 (1–2), 38–43. URL: http://www.ncbi.nlm.nih.gov/pubmed/17890070 (accessed 01.05.2010).

Cherdshewasart, W., et al. 2008. Variance of estrogenic activity of the phytoestrogen-rich plant. Maturitas, 61 (4), 350–357. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18980816 (accessed 01.04.2010).

Chindewa, R., et al. 2008. Pueraria mirifica, phytoestrogen-induced change in synaptophysin expression via estrogen receptor in rat hippocampal neuron. J. Med. Assoc. Thai., 91 (2), 208–214. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18389986 (accessed 01.05.2010).

Ju, Y., et al. 2008. A dietary supplement for female sexual dysfunction, Avlimil, stimulates the growth of estrogen-dependent breast tumors (MCF-7) implanted in ovariectomized athymic nude mice. Food Chern. Toxicol., 46, 310–320. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17919800 (accessed 01.04.2010).

Manonai, J., et al. 2008. Effects and safety of Pueraria mirifica on lipid profiles and biochemical markers of bone turnover rates in healthy postmenopausal women. Menopause, 15 (3), 530–535. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18202589 (accessed 01.30.2009).

Okamura, S., et al. 2008. Pueraria mirifica phytoestrogens improve dyslipidemia in postmenopausal women probably by activating estrogen receptor subtypes. Tohoku J. Exp. Med., 216 (4), 341–351. URL: http://www.jstage.jst.go.jp/article/tjem/216/4/216_341/_article (accessed 01.05.2010).

Sookvanichsilip, N., et al. 2008. Estrogenic activity of the dichloromethane extract of Pueraria mirifica. Fitoterapia, 79 (7–8), 509–514. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18621111 (accessed 01.04.2010).

Urosopan, N., et al. 2008. Preventative effects of Pueraria mirifica on bone loss in ovariectomized rats. Maturitas, 59 (2), 137–148. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18313241 (accessed 01.04.2010).

Chandeying, V., et al. 2007. Challenges in the conduct of Thai herbal scientific study: Efficacy and safety of phytoestrogen, Pueraria mirifica (Kwao Keur Kao), phase I, in the alleviation of climacteric symptoms in perimenopausal women. J. Med. Assoc. Thai., 90 (7), 1274–1280. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17710964 (accessed 01.30.2009).

Chandeying, V., et al. 2007. Efficacy comparison of Pueraria mirifica (PM) against conjugated equine estrogen (CEE) with/without medroxyprogesterone acetate (MPA) in the treatment of climacteric symptoms in perimenopausal women: Phase III study. J. Med. Assoc. Thai., 90 (9), 1720–1726. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17957910 (accessed 01.30.2009).

Cherdshewasart, W., et al. 2007. Evaluation of the estrogenic activity of the wild Pueraria mirifica by vaginal cornification assay. J. Reprod. Dev., 53 (2), 385–393. URL: http://www.jstage.jst.go.jp/article/jrd/53/2/53_385/_article (accessed 01.05.2010).

Cherdshewasart, W., et al. 2007. Major isoflavonoid contents of the phytoestrogen rich-herb Pueraria mirifica in comparison with Pueraria lobata. J. Pharm. Biomed. Anal., 43 (2), 428–434.

Cherdshewasart, W., et al. 2007. Pretreatment with phytoestrogen-rich plant decreases breast tumor incidence and exhibits lower profile of mammary ERalpha and ERbeta. Maturitas, 58 (2), 174-181. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17870258 (accessed 01.05.2010).

Cherdshewasart, W., & Sriwatcharuakul, S., 2007. Major isoflavonoid contents of the 1-year-cultivated phytoestrogen rich-herb Pueraria mirifica. Biosci. Biotechnol Biochem., 71 (10), 2527–2533. URL: http://www.jstage.jst.go.jp/article/bbb/71/10/71_2527/_article (accessed 01.05.2010).

Jaroenporn, S., et al. 2007. Assessment of fertility and reproductive toxicity in adult female mice after long-term exposure to Pueraria mirifica herb. J. Reprod. Dev., 53 (5), 995-1005. URL: http://www.jstage.jst.go.jp/article/jrd/53/5/53_995/_article (accessed 01.04.2010).

Manonai, J., et al. 2007. Effect of Pueraria mirifica on vaginal health. Menopause, 14 (5), 919–924. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17415017 (accessed 01.30.2009).

Trisomboon, H., et al. 2007. Assessment of urinary gonadotropin and steroid hormone profiles of female cynomolgus monkeys after treatment with Pueraria mirifica. J. Reprod. Dev., 53 (2), 395-403. URL: http://www.jstage.jst.go.jp/article/jrd/53/2/53_395/_article (accessed 01.05.2010).

Wong, R., & Rabie, B. 2007. Effect of puerarin on bone formation. Osteoarthritis Cartilage, 15 (8), 894–899. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17379543 (accessed 01.05.2010).

Li, W.-Z., et al. 2006. [Studies on the effect of extracts of several Chinese herbal medicines and other medicines on alcohol dehydrogenase activity.] Zhong Yao Cai., 29 (8), 816–818. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17076243 (accessed 01.05.2010).

Malaivijitnond, S., et al. 2006. Using vaginal cytology to assess the estrogenic activity of phytoestrogen-rich herb. J. Ethnopharmacol., 107 (3), 354-360. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16730147 (accessed 01.04.2010).

Pawlyk, A., et al. 2006. Effects of the 5–HT2A antagonist mirtazapine in rat models of thermoregulation. Brain Res., 1123 (1), 135–144.

Penetar, D., et al. 2006. Pharmacokinetic profile of the isoflavone puerarin after acute and repeated administration of a novel kudzu extract to human volunteers. J. Altern. Complement. Med., 12, 543–548.

Zhang, S., et al. 2006. Reversal of chemical-induced liver fibrosis in Wistar rats by puerarin. J. Nutr. Biochem., 17 (7), 485–491.

Chiang, H.–M., et al. 2005. Life-threatening interaction between the root extract of Pueraria lobata and methotrexate in rats. Toxicol. Appl. Pharmacol., 209 (3), 263–268.

Kang, K.-A., et al. 2005. Protective effect of Puerariae radix on oxidative stress induced by hydrogen peroxide and streptozotocin. Biol. Pharm. Bull., 28 (7), 1154–1160.

Kwon, H-J., et al. 2005. Amelioration effects of traditional Chinese medicine on alcohol-induced fatty liver. World J. Gastroenterol., 11 (35), 5512–5516. URL (abstract): http://www.wjgnet.com/1007-9327/11/5512.pdf (accessed 01.19.2011).

Lukaczer, D., et al. 2005. Clinical effects of a proprietary combination isoflavone nutritional supplement in menopausal women: A pilot trial. Altern. Ther. Health Med., 11 (5), 60–65.

Zhang, C., et al. 2005. In vitro estrogenic activities of Chinese medicinal plants traditionally used for the management of menopausal symptoms. J. Ethnopharmacol., 98, 295–300.

Zhang, Y., et al. 2005. Analysis of the estrogenic components in kudzu root by bioassay and high performance liquid chromatography. J. Steroid Biochem. Mol. Biol., 94, 375–381.

Benlhabib, E., et al. 2004. Kudzu root extract suppresses voluntary alcohol intake and alcohol withdrawal symptoms in P rats receiving free access to water and alcohol. J. Med. Food, 7 (2), 168–179.

Chen, W., et al. 2004. Mediation of beta-endorphin by the isoflavone puerarin to lower plasma glucose in streptozotocin-induced diabetic rats. Planta Med., 70 (2), 113–116.

Chueh, F., et al. 2004. Peurarin acts through brain seratonergic mechanisms to induce thermal effects. J. Pharmacol. Sci., 96 (4), 420–427.

Kim, O., et al. 2004. Establishment of in vitro test system for the evaluation of the estrogenic activities of natural products. Arch. Pharm. Res., 27, 906–911.

Lamlertkittikul, S., & Chandeying, V. 2004. Efficacy and safety of Pueraria mirifica (Kwao Kruea Khao) for the treatment of vasomotor symptoms in perimenopausal women: Phase II Study. J. Med. Assoc. Thai., 87 (1), 33–40.

Malaivijitnond, S., et al. 2004. Different effects of Pueraria mirifica, an herb containing phytoestrogens, on LH and FSH secretion in gonadectomized female and male rats. J. Pharmacol. Sci., 96 (4), 428–435. URL: http://www.jstage.jst.go.jp/article/jphs/96/4/96_428/_article (accessed 01.04.2010).

Wang, J., et al. 2004. Effects of Radix Puerariae flavones on liver lipid metabolism in ovariectomized rats. World J. Gastroenterol., 10 (13), 1967–1970. URL: http://www.wjgnet.com/1007-9327/10/1967.asp (accessed 01.04.2010).

Xu, X., et al. 2004. Effects of puerarin on learning-memory and amino acid transmitters of brain in ovariectomized mice. Planta Med., 70 (7), 627–631.

Boué, et al. 2003. Evaluation of the estrogenic effects of legume extracts containing phytoestrogens. J. Agric. Food Chem., 51 (8), 2193–2199. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12670155 (accessed 09.16.2010).

Hsu, F., et al. 2003. Antihyperglycemic effect of puerarin in streptozotocin-induced diabetic rats. J. Nat. Prod., 66 (6), 788–792.

Wang, X., et al. 2003. Puerariae radix prevents bone loss in ovariectomized mice. J. Bone Miner. Metab., 21, 268–275.

Woo, J., et al. 2003. Comparison of Pueraria lobata with hormone replacement therapy in treating the adverse health consequences of menopause. Menopause, 10 (4), 352–361.

Zheng, G., et al. 2002. [Estrogen-like effects of puerarin and total isoflavones from Pueraria lobata]. Zhong Yao Cai, 15 (8), 566–568.



Ngan, A., & Conduit, R. 2011. A double-blind, placebo-controlled investigation of the effects of Passiflora incarnata (passionflower) herbal tea on subjective sleep quality. Phytother. Res. [Epub ahead of print]. URL: http://www.ncbi.nlm.nih.gov/pubmed/21294203 (accessed 02.24.2011).

Natural Standard. 2011. Passionflower (Passiflora incarnata L.). Professional monograph. URL (subscription required): http://naturalstandard.com/databases/herbssupplements/all/passionflower.asp (accessed 01.31.2011).

Appel, K., et al. 2010. Modulation of the ?-aminobutyric acid (GABA) system by Passiflora incarnata L. Phytother. Res. [Epub ahead of print]. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21089181 (accessed 02.14.2011).

Boeira, J., et al. 2010. Toxicity and genotoxicity evaluation of Passiflora alata Curtis (Passifloraceae). J. Ethnopharmacol., 128 (2), 526-532. URL: http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&cmd=prlinks&retmode=ref&id=19799991 (accessed 01.28.2011).

Cravotto, G., et al. 2010. Phytotherapeutics: An evaluation of the potential of 1000 plants. J. Clin. Pharm. Ther., 35 (1), 11-48. Review. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20175810 (accessed 02.14.2011).

Deng, J., et al. 2010. Anxiolytic and sedative activities of Passiflora edulis f. flavicarpa. J. Ethnopharmacol., 128, 148-153. URL: http://www.ncbi.nlm.nih.gov/entrez/eutils/elink.fcgi?dbfrom=pubmed&cmd=prlinks&retmode=ref&id=20051259 (accessed 01.28.2011).

Elsas, S., et al. 2010. Passiflora incarnata L. (Passionflower) extracts elicit GABA currents in hippocampal neurons in vitro, and show anxiogenic and anticonvulsant effects in vivo, varying with extraction method. Phytomedicine, 17 (12), 940–949. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20382514 (accessed 02.14.2011).

Faustino, T., et al. 2010. [Medicinal plants for the treatment of generalized anxiety disorder: A review of controlled clinical studies.] Rev. Bras. Psiquiatr., 32 (4), 429–436. URL: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-44462010000400017&lng=en&nrm=iso&tlng=en (accessed 02.14.2011).

Fiebich, B., et al. 2010. Pharmacological studies in an herbal drug combination of St. John’s Wort (Hypericum perforatum) and passion flower (Passiflora incarnata): In vitro and in vivo evidence of synergy between Hypericum and Passiflora in antidepressant pharmacological models. Fitoterapia [Epub ahead of print]. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21185920 (accessed 02.14.2011).

Holbik, M., et al. 2010. Apparently no sedative benzoflavone moiety in passiflorae herba. Planta Med., 76 (7), 662–664. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20301055 (accessed 02.14.2011).

Lakhan, S., & Vieira, K. 2010. Nutritional and herbal supplements for anxiety and anxiety-related disorders: Systematic review. Nutr. J., 9 (1), 42. URL: http://www.nutritionj.com/content/9/1/42 (accessed 01.28.2011).

Sampath, C., et al. 2010. Anxiolytic effects of fractions obtained from Passiflora incarnata L. in the elevated plus maze in mice. Phytother. Res. [Epub ahead of print]. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21077264 (accessed 02.14.2011).

Wohlmuth, H., et al. 2010. Pharmacognosy and chemotypes of passionflower (Passiflora incarnata L.). Biol. Pharm. Bull., 33 (6), 1015–1018. URL: http://www.jstage.jst.go.jp/article/bpb/33/6/33_1015/_article (accessed 09.28.2010).

Carrasco, M., et al. 2009. Interactions of Valeriana officinalis L. and Passiflora incarnata L. in a patient treated with lorazepam. Phytother. Res., 23 (12), 1795–1796. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19441067 (accessed 02.14.2011).

Grundmann, O., et al. 2009. Anxiolytic effects of a passion flower (Passiflora incarnata L.) extract in the elevated plus maze in mice. Pharmazie, 64 (1), 63–64. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19216234 (accessed 02.14.2011).

Tabach, R., et al. 2009. Preclinical toxicological assessment of a phytotherapeutic product — CPV (based on dry extracts of Crataegus oxyacantha L., Passiflora incarnata L., and Valeriana officinalis L.). Phytother. Res., 23 (1), 33-40. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19048610 (accessed 02.14.2011).

Weeks, B. 2009. Formulations of dietary supplements and herbal extracts for relaxation and anxiolytic action: Relarian. Med. Sci. Monit., 15 (11), RA256-RA262. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19865069 (accessed 02.14.2011).

Barbosa, P., et al. 2008. The aqueous extracts of Passiflora alata and Passiflora edulis reduce anxiety-related behaviors without affecting memory process in rats. J. Med. Food, 11 (2), 282–288. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18598170 (accessed 02.14.2011).

Beaumont, D., et al. 2008. The effects of chrysin, a Passiflora incarnata extract, on natural killer cell activity in male Sprague–Dawley rats undergoing abdominal surgery. AANA J., 76 (2), 113–117. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18478816 (accessed 02.14.2011).

Grundmann, O., et al. 2008. Anxiolytic activity of a phytochemically characterized Passiflora incarnata extract is mediated via the GABAergic system. Planta Med., 74 (15), 1769-1773. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19006051 (accessed 02.14.2011).

Masteikova, R., et al. 2008. Antiradical activities of the extract of Passiflora incarnata. Acta Pol. Pharm., 65 (5), 577-583. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19051605 (accessed 01.28.2011).

Movafegh, A., et al. 2008. Preoperative oral Passiflora incarnata reduces anxiety in ambulatory surgery patients: A double-blind, placebo-controlled study. Anesth. Analg., 106 (6), 1728-1732. URL: http://www.anesthesia-analgesia.org/content/106/6/1728.long (accessed 01.28.2011).

Nassiri-Asl, M., et al. 2008. Possible role of GABAA-benzodiazepine receptor in anticonvulsant effects of Pasipay in rats. Zhong Xi Yi Jie He Xue Bao, 6 (11), 1170–1173. URL: http://www.jcimjournal.com/en/showAbstrPage.aspx?articleid=167219772008111170 (accessed 02.14.2011).

Rodriguez–Fragoso, L., et al. 2008. Risks and benefits of commonly used herbal medicines in México. Toxicol. Appl. Pharmacol., 227 (1), 125–135. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2322858/?tool=pubmed (accessed 02.14.2011).

Zhai, K., et al. 2008. Chrysin induces hyperalgesia via the GABAA receptor in mice. Planta Med., 74 (10), 1229–1234. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18612941 (accessed 02.14.2011).

Brown, E., et al. 2007. Evaluation of the anxiolytic effects of chrysin, a Passiflora incarnata extract, in the laboratory rat. AANA J., 75 (5), 333–337. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17966676 (accessed 02.14.2011).

Lolli, L., et al. 2007. Possible involvement of GABA A-benzodiazepine receptor in the anxiolytic-like effect induced by Passiflora actinia extracts in mice. J. Ethnopharmacol., 111 (2), 308-314. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17196350 (accessed 02.14.2011).

Miyasaka, L., et al. 2007. Passiflora for anxiety disorder. Cochrane Database Syst. Rev. (1), CD004518. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17253512 (accessed 02.09.2011).

Nassiri-Asl, M., et al. 2007. Anticonvulsant effects of aerial parts of Passiflora incarnata extract in mice: Involvement of benzodiazepine and opioid receptors. BMC Complement. Altern. Med., 7, 26. URL: http://www.biomedcentral.com/1472-6882/7/26 (accessed 01.28.2011).

Sarris, J. 2007. Herbal medicines in the treatment of psychiatric disorders: A systematic review. Phytother. Res., 21 (8), 703-716. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17562566 (accessed 02.14.2011).

Capasso, A., & Sorrentino, L. 2005. Pharmacological studies on the sedative and hypnotic effect of kava kava and Passiflora extracts combination. Phytomedicine, 12 (1-2), 39-45. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15693706 (accessed 02.14.2011).

[No authors listed.] 2005. Management of insomnia: A place for traditional herbal remedies. Prescrire Int., 14 (77), 104–107. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15984105 > (accessed 02.14.2011).

Santos, K., et al. 2005. Passiflora actinia Hooker extracts and fractions induce catalepsy in mice. J. Ethnopharmacol., 100 (3), 306–309. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15882936 (accessed 02.14.2011).

Ulbricht, C., & Basch, E., Eds. 2005. Natural Standard Herb & Supplement Reference: Evidence-based Clinical Reviews. Natural Standard Research Collaboration. NY: Elsevier Mosby.

Dhawan, K., et al. 2004. Passiflora: A review update. J. Ethnopharmacol., 94 (1), 1-23. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15261959 (accessed 02.14.2011).

Peeters, E., et al. 2004. Effect of supplemental tryptophan, vitamin E, and a herbal product on responses by pigs to vibration. J. Anim. Sci., 82 (8), 2410-2420. URL: http://jas.fass.org/cgi/content/full/82/8/2410 (accessed 02.14.2011).

Wheatley, D. 2005. Medicinal plants for insomnia: A review of their pharmacology, efficacy and tolerability. J. Psychopharmacol., 19 (4), 414–421. Review. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15982998> (accessed 02.14.2011).

Hidaka, M., et al. 2004. Potent inhibition by star fruit of human cytochrome P450 3A (CYP3A) activity. Drug Metab. Dispos., 32 (6), 581-583. URL: http://dmd.aspetjournals.org/content/32/6/581.long (accessed 01.28.2011).

Dhawan, K., et al. 2003. Attenuation of benzodiazepine dependence in mice by a tri-substituted benzoflavone moiety of Passiflora incarnata Linnaeus: A non-habit forming anxiolytic. J. Pharm. Pharm. Sci., 6 (2), 215–222. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12935433> (accessed 02.14.2011).

Dhawan, K. 2003. Drug/substance reversal effects of a novel tri-substituted benzoflavone moiety (BZF) isolated from Passiflora incarnata Linn. — a brief perspective. Addict. Biol., 8 (4), 379–386. Review. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/14690874 (accessed 02.14.2011).

Dhawan, K., & Sharma, A. 2003. Restoration of chronic-Delta 9-THC-induced decline in sexuality in male rats by a novel benzoflavone moiety from Passiflora incarnata Linn. Br. J. Pharmacol., 138 (1), 117–120. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1573641/?tool=pubmed (accessed 02.09.2011).

Dhawan, K., & Sharma, A. 2002. Antitussive activity of the methanol extract of Passiflora incarnata leaves. Fitoterapia, 73 (5), 397–399. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12165335 (accessed 02.15.2011).

Dhawan, K., et al. 2002. Beneficial effects of chrysin and benzoflavone on virility in 2-year-old male rats. J. Med. Food, 5 (1), 43–48. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12511112 (accessed 02.15.2011).

Dhawan, K., et al. 2002. Comparative anxiolytic activity profile of various preparations of Passiflora incarnata Linneaus: A comment on medicinal plants’ standardization. J. Altern. Complement. Med., 8 (3), 283-291. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12165186 (accessed 01.28.2011).

Dhawan, K., et al. 2002. Nicotine reversal effects of the benzoflavone moiety from Passiflora incarnata Linneaus in mice. Addict. Biol., 7 (4), 435-441. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/14690874 (accessed 02.14.2011).

Dhawan, K., et al. 2002. Reversal of cannabinoids (delta9-THC) by the benzoflavone moiety from methanol extract of Passiflora incarnata Linnaeus in mice: A possible therapy for cannabinoid addiction. J. Pharm. Pharmacol., 54 (6), 875–881. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12244887 (accessed 02.14.2011).

Dhawan, K., et al. 2002. Suppression of alcohol-cessation-oriented hyper-anxiety by the benzoflavone moiety of Passiflora incarnata Linnaeus in mice. J. Ethnopharmacol., 81 (2), 239–244. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12065157 (accessed 02.14.2011).

Krenn, L. 2002. [Passion Flower (Passiflora incarnata L.) — a reliable herbal sedative.] Wien Med. Wochenschr., 152 (15–16), 404–406. URL: http://www.ncbi.nlm.nih.gov/pubmed/12244887 (accessed 02.14.2011).

Akhondzadeh, S., et al. 2001a. Passionflower in the treatment of opiates withdrawal: A double-blind randomized controlled trial. J. Clin. Pharm. Ther., 26 (5), 369–373. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11679027 (accessed 02.14.2011).

Akhondzadeh, S., et al. 2001b. Passionflower in the treatment of generalized anxiety: A pilot double-blind randomized controlled trial with oxazepam. J. Clin. Pharm. Ther., 26 (5), 363–367. URL (abstract): http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2710.2001.00367.x/abstract (accessed 01.28.2011).

Dhawan, K., et al. 2001. Anti-anxiety studies on extracts of Passiflora incarnata Linnaeus. J. Ethnopharmacol., 78 (2–3), 165–170. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11694362 (accessed 01.26.2011).

Dhawan, K., et al. 2001. Anti-anxiety studies on extracts of Passiflora incarnata Linnaeus. J. Ethnopharmacol., 78 (2–3), 165–170. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11694362 (accessed 01.26.2011).

Dhawan, K., et al. 2001. Comparative biological activity study on Passiflora incarnata and P. edulis. Fitoterapia, 72 (6), 698-702. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11543974 (accessed 02.15.2011).

Dhawan, K., et al. 2001. Correct identification of Passiflora incarnata Linn., a promising herbal anxiolytic and sedative. J. Med. Food, 4 (3), 137-144. URL: http://www.ncbi.nlm.nih.gov/pubmed/12639407 (accessed 01.28.2011).

Fisher, A., et al. 2000. Toxicity of Passiflora incarnata L. J. Toxicol. Clin. Toxicol., 38 (1), 63–66. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/10696928 (accessed 02.15.2011).

Bourin, M., et al. 1997. A combination of plant extracts in the treatment of outpatients with adjustment disorder with anxious mood: Controlled study versus placebo. Fundamental. Clin. Pharmacol., 11 (2), 127-132. URL (abstract): http://onlinelibrary.wiley.com/doi/10.1111/j.1472-8206.1997.tb00179.x/abstract (accessed 01.27.2011).

Salgueiro, J., et al. 1997. Anxiolytic natural and synthetic flavonoid ligands of the central benzodiazepine receptor have no effect on memory tasks in rats. Pharmacol. Biochem. Behav., 58 (4), 887-891. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/9408191> (accessed 01.28.2011).

Soulimani, R., et al. 1997. Behavioral effects of Passiflora incarnata L. and its indole alkaloid and flavonoid derivatives and maltol in the mouse. J. Ethnopharmacol., 57 (1), 11–20. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/9234160 (accessed 02.15.2011).

Rommelspacher, H., et al. 1994. Harman (1-methyl-beta-carboline) is a natural inhibitor of monoamine oxidase type A in rats. Eur. J. Pharmacol., 252 (1), 51-59. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/8149995 (accessed 01.27.2011).

Wolfman, C., et al. 1994. Possible anxiolytic effects of chrysin, a central benzodiazepine receptor ligand isolated from Passiflora coerulea. Pharmacol. Biochem. Behav., 47 (1), 1-4. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/7906886 (accessed 01.28.2011).

Medina, J., et al. 1990. Chrysin (5,7-di-OH-flavone), a naturally-occurring ligand for benzodiazepine receptors, with anticonvulsant properties. Biochem. Pharmacol., 40 (10), 2227-2231. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/2173925 (accessed 01.28.2011).

Speroni, E., & Minghetti, A. 1988. Neuropharmacological activity of extracts from Passiflora incarnata. Planta Med., 54 (6), 588–491. URL (abstract): https://www.thieme-connect.com/DOI/DOI?10.1055/s-2006-962525 (accessed 01.28.2011).

Aoyagi, N., et al. 1974. Studies on Passiflora incarnata dry extract. I. Isolation of maltol and pharmacological action of maltol and ethyl maltol. Chem. Pharm. Bull. (Tokyo), 22 (5), 1008–1013). URL (no abstract available): http://www.ncbi.nlm.nih.gov/pubmed/4421168 (accessed 01.28.2011).


Red clover (Trifolium pratense)

Lipovac, M., et al. 2011. The effect of red clover isoflavone supplementation over vasomotor and menopausal symptoms in postmenopausal women. Gynecol. Endocrinol. [Epub ahead of print.] URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21870906 (accessed 08.31.2011).

Chen, Y, et al. 2010. Biochanin A induction of sulfotransferases in rats. J. Biochem. Mol. Toxicol., 24 (2), 102–114. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20391625 (accessed 09.17.2010).

El Touny, L., et al. 2010. Biochanin A reduces drug-induced p75NTR expression and enhances cell survival: A new in vitro assay for screening inhibitors of p75NTR expression. Rejuvenation Res. [Epub ahead of print.] URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20818983 (accessed 09.17.2010).

Lipovac, M., et al. 2010. Improvement of postmenopausal depressive and anxiety symptoms after treatment with isoflavones derived from red clover extracts. Maturitas, 65 (3), 258–261. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19948385 (accessed 03.04.2010).

Rountree, R. 2010. RoundocRx. Phytoestrogens. Altern. Complement. Ther., 16 (1), 5–10. URL (abstract): ://www.liebertonline.com/doi/abs/10.1089/act.2010.16110 (accessed 03.10.2010).

Shams, T., et al. 2010. Efficacy of black cohosh-containing preparations on menopausal symptoms: A meta-analysis. Alt. Ther., 16 (1), 36–44. URL (PDF): http://www.isohh.org/ebooks/0110-athm11.pdf (accessed 01.08.2010).

Sklenickova, O., etal. 2010. Selective growth inhibitory effect of biochanin A against intestinal tract colonizing bacteria. Molecules, 15 (3), 1270–1279. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20335979 (accessed 09.17.2010).

Thors, L., et al. 2010. Biochanin A, a naturally occurring inhibitor of fatty acid amide hydrolase. Br. J. Pharmacol., 160 (3), 549–560. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20590565 (accessed 09.17.2010).

Geller, S., et al. 2009. Safety and efficacy of black cohosh and red clover for the management of vasomotor symptoms: A randomized controlled trial. Menopause, 16 (6), 1156–1166. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19609225 (accessed 12.11.2009).

Kawakita, S., et al. 2009. Effect of an isoflavones-containing red clover preparation and alkaline supplementation on bone metabolism in ovariectomized rats. Clin. Interv. Aging, 4, 91–100. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2685230/?tool=pubmed (accessed 01.04.2010).

Mu, H., et al. 2009. Research on antioxidant effects and estrogenic effect of formononetin from Trifolium pratense (red clover). Phytomedicine, 16 (4), 314–319. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18757188(accessed 01.04.2009).

Pakalapati, G., et al. 2009. Influence of red clover (Trifolium pratense) isoflavones on gene and protein expression profiles in liver of ovariectomized rats. Phytomedicine, 16 (9), 845–855. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19409770 (accessed 09.14.2010).

Sehdev, V., et al. 2009. Biochanin A modulates cell viability, invasion, and growth promoting signaling pathways in HER-2-positive breast cancer cells. J. Oncol., 121458. URL: http://www.hindawi.com/journals/jo/2009/121458.html (accessed 09.17.2010).

Terzic, M., et al. 2009. Influence of red clover-derived isoflavones on serum lipid profile in postmenopausal women. J. Obstet. Gynaecol. Res., 35 (6), 1091–1095. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20144173 (accessed 09.14.2010).

Adaikan, P., et al. 2008. Efficacy of red clover isoflavones in the menopausal rabbit model. Fertil. Steril., 92 (6), 2008–2013. URL: (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18973881 (accessed 01.04.2010).

Ju, Y., et al. 2008. A dietary supplement for female sexual dysfunction, Avlimil, stimulates the growth of estrogen-dependcnt breast tumors (MCF-7) implanted in ovariectomized athymic nude mice. Food Chern ToxicoI., 46, 310-320. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17919800 (accessed 01.04.2010).

Medjakovic, S., & Jungbauer, A. 2008. Red clover isoflavones biochanin A and formononetin are potent ligands of the human aryl hydrocarbon receptor. J. Steroid Biochem. Mol. Biol., 108 (1–2), 171–177. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18060767 (accessed 09.17.2010).

Mense, S., et al. 2008. Phytoestrogens and breast cancer prevention: Possible mechanisms of action. Environ. Health Perspect., 116 (4), 426–433. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2291001/?tool=pubmed (accessed 09.16.2010).

Mishra, P., et al. 2008. Chemoprevention of mammary tumorigenesis and chemomodulation of the antioxidative enzymes and peroxidative damage in prepubertal Sprague Dawley rats by Biochanin A. Mol. Cell. Biochem., 312 (1–2), 1–9. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18273562 (accessed 09.17.2010).

Moon, Y., et al. 2008. Biochanin A inhibits breast cancer tumor growth in a murine xenograft model. Pharmaceutical Res., 25 (9), 2158–2163. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18454305 (accessed 09.17.2010).

Oseni, T., et al. 2008. Selective estrogen receptor modulators and phytoestrogens. Planta Med., 74 (13), 1656-1665. URL: http://www.thieme-connect.com/DOI/DOI?10.1055/s-0028-1088304 (accessed 01.05.2010).

Overk, C., et al. 2008. In vivo estrogenic comparisons of Trifolium pratense (red clover), Humulus lupulus (hops), and the pure compounds isoxanthohumol and 8-prenylnaringenin. Chern. Biol. Interact., 176, 30-39. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2574795/?tool=pubmed> (accessed 01.04.2010.

Powles, T., et al. 2008. Red clover isoflavones are safe and well tolerated in women with a family history of breast cancer. Menopause Int., 14 (1), 6–12. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18380954 (accessed 01.04.2010).

Wang, S., et al. 2008. Variable isoflavone content of red clover products affects intestinal disposition of biochanin A, formononetin, genistein, and daidzein. J. Altern. Complement. Med., 14 (3), 287–297. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2771774/?tool=pubmed (accessed 09.17.2010).

Wang, Y., et al. 2008. The red clover (Trifolium pratense) isoflavone biochanin A inhibits aromatase activity and expression. Br. J. Nutr., 99 (2), 303–310. URL (abstract): >http://www.ncbi.nlm.nih.gov/pubmed/17761019 (accessed 09.17.2010).

Wuttke, W., et al. 2008. Phytoestrogens: Endocrine disrupters or replacement for hormone replacement therapy? Maturitas, 61 (1–2), 159–170. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19434888 (accessed 12.11.2009).

Chan M., et al. 2007. Oestrogen receptor alpha is required for biochanin A-induced apolipoprotein A-1 mRNA expression in HepG2 cells. Br. J. Nutr., 98 (3), 534–539. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17532863 (accessed 09.17.2010).

Coon, J., et al. 2007. Trifolium pratense isoflavones in the treatment of menopausal hot flushes: A systematic review and meta-analysis. Phytomedicine, 14 (2–3), 153–159.URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17239573 (accessed 09.16.2010).

Friedman, J., et al. 2007. Multifocal and recurrent subarachnoid hemorrhage due to an herbal supplement containing natural coumarins. Neurocrit. Care, 7 (1), 76–80. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17634840 (accessed 12.11.2009).

Kaminska, B., et al. 2007. Phytoestrogens alter cortisol and androstenedione secretion by porcine adrenocortical cells. Acta Vet. Hung., 55 (3), 359–367. URL (abstract): http://www.akademiai.com/content/m9402351057v1077/ (accessed 09.21.2010).

Lethaby, A., et al. 2007. Phytoestrogens for vasomotor menopausal symptoms. Cochrane Database Syst. Rev., (4), CD001395. URL (abstract): >http://www.ncbi.nlm.nih.gov/pubmed/17943751 (accessed 09.17.2010)

Moon, Y., et al. 2007. Effects of the flavonoid biochanin A on gene expression in primary human hepatocytes and human intestinal cells. Mol. Nutr. Food Res., 51 (3), 317–323. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17340576 (accessed 09.17.2010).

Moon, Y., et al. 2007. Effects of flavonoids genistein and biochanin A on gene expression and their metabolism in human mammary cells. Nutr. Cancer., 57 (1), 48-58. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17516862 (accessed 09.17.2010).

Occhiuto, F., et al. 2007. Effects of phytoestrogenic isoflavones from red clover (Trifolium pratense L.) on experimental osteoporosis. Phytother. Res., 21 (2), 130–134. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17117453 (accessed 09.16.2010).

Rimoldi, G., et al. 2007. Effects of chronic genistein treatment in mammary gland, uterus, and vagina. Environ. Health Perspect., 115 (Suppl. 1), 62–68. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2174401/?tool=pubmed (accessed 01.04.2010).

Booth, N., et al. 2006. Clinical studies of red clover (Trifolium pratense) dietary supplements in menopause: A literature review. Menopause, 13 (2), 251–264. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16645539 (accessed 03.04.2010).

Booth, N., et al. 2005. Seasonal variation of red clover (Trifolium pratense L., Fabaceæ) isoflavones and estrogenic activity. J. Agric. Food Chem., 54 (4), 1277–1282. URL (abstract): (accessed 09.21.2010).

Carroll, D. 2006. Nonhormonal therapies for hot flashes in menopause. Am. Fam. Physician, 73 (3), 457–464. URL: http://www.aafp.org/afp/2006/0201/p457.html (accessed 12.11.2009).

Geller, S., & Studee, L. 2006. Soy and red clover for midlife and aging. Climacteric, 9 (4), 245–263. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1780039/?tool=pubmed (accessed 01.04.2010).

Han, E., et al. 2006. Effect of biochanin A on the aryl hydrocarbon receptor and cytochrome P450 1A1 in MCF-7 human breast carcinoma cells. Arch. Pharm. Res., 29 (7), 570–576. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16903077 (accessed 09.16.2010).

Imhof, M., et al. 2006. Effects of a red clover extract (MF11RCE) on endometrium and sex hormones in postmenopausal women. Maturitas, 55 (1), 76–81.URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16513301 (accessed 03.04.2010).

Moon, Y., et al. 2006. Pharmacokinetics and bioavailability of the isoflavone biochanin A in rats. AAPS J., 8 (3), E433–E442. URL (abstract): http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2761049/?tool=pubmed (accessed 09.17.2010).

Nelson, H., et al. 2006. Nonhormonal therapies for menopausal hot flashes: Systematic review and meta-analysis. JAMA, 295 (17), 2057–2071. URL: http://jama.ama-assn.org/cgi/content/full/295/17/2057 (accessed 12.11.2009).

Park, J., et al. 2006. Up-regulation of interleukin-4 production via NF-AT/AP-1 activation in T cells by biochanin A, a phytoestrogen and its metabolites. Toxicol. Appl. Pharmacol., 212 (3), 188–199. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16169028 (accessed 09.20.2010).

Rice, S., et al. 2006. Phytoestrogens and their low dose combinations inhibit mRNA expression and activity of aromatase in human granulosa-luteal cells. J. Steroid Biochem. Mol. Biol., 101 (4–5), 2160150225. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16965912 (accessed 09.17.2010).

Schrepfer, S., ET AL. 2006. The selective estrogen receptor-beta agonist biochanin A shows vasculoprotective effects without uterotrophic activity. Menopause, 13 (3), 489–499. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16735947 (accessed 09.20.2010).

Tsao, R., et al. 2006. Isoflavone profiles of red clovers and their distribution in different parts harvested at different growing stages. J. Agric. Food Chem., 54 (16), 5797–5805. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16881680 (accessed 09.21.2010).

Wang, H-P., et al. 2006. Endothelium-independent vasorelaxant effect of the phyto-oestrogen biochanin A on rat thoracic aorta. Conf. Proc. IEEE Eng. Med. Biol. Soc., 3, 2244–2247. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17282679 (accessed 09.17.2010).

Beck, V., et al. 2005. Phytoestrogens derived from red clover: An alternative tohttp://www.ncbi.nlm.nih.gov/pubmed/15876415 (accessed 09.16.2010).

Hidalgo, L. 2005. The effect of red clover isoflavones on menopausal symptoms, lipids and vaginal cytology in menopausal women: A randomized, double-blind, placebo-controlled study. Gynecol. Endocrinol., 21 (5), 257–264. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16373244(accessed 01.04.2010).

Lee, K-H., & Choi, E-M. 2005. Biochanin A stimulates osteoblastic differentiation and inhibits hydrogen peroxide-induced production of inflammatory mediators in MC3T3-E1 cells. Biol. Pharm. Bull., 28 (10), 1948–1953. URL: http://www.jstage.jst.go.jp/article/bpb/28/10/28_1948/_article (accessed 09.20.2010).

Low Dog, T. 2005. Menopause: A review of botanical dietary supplements. Am. J. Med., 118 (Suppl. 12B), 98-108. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16414334 (accessed 12.11.2009).

Lukaczer, D., et al. 2005. Clinical effects of a proprietary combination isoflavone nutritional supplement in menopausal women: A pilot trial. Altern. Ther. Health Med., 11 (5), 60–65. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16189949 (accessed 09.17.2010).

Simoncini, T., et al. 2005. Activation of nitric oxide synthesis in human endothelial cells by red clover extracts. Menopause, 12 (1), 69–77. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15668603 (accessed 09.17.2010).

Somjen, D., et al. 2005. Membranal effects of phytoestrogens and carboxy derivatives of phytoestrogens on human vascular and bone cells: New insights ased on studies with carboxy-biochanin A. J. Steroid Biochem. Mol. Biol., 93 (2–5), 293–303. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15860273 (accessed 09.21.2010).

Ulbricht, C., & Basch, E., Eds. 2005. Natural Standard Herb & Supplement Reference: Evidence-based Clinical Reviews. Natural Standard Research Collaboration. NY: Elsevier Mosby.

Atkinson, C., et al. 2004. Red-clover-derived isoflavones and mammographic breast density: A double-blind, randomized, placebo-controlled trial [ISRCTN42940165]. Breast Cancer Res., 6 (3), R170–R179.ver-derived isoflavone supplementation on insulin-like growth factor, lipid and antioxidant status in healthy female volunteers: A pilot study. Eur. J. Clin. Nutr., 58, 173–179. URL: http://breast-cancer-research.com/content/6/3/R170 (accessed 09.20.2010).

Atkinson, C., et al. 2004. The effects of phytoestrogen isoflavones on bone density in women: A double-blind, randomised, placebo-controlled trial. Am. J. Clin. Nutr., 79, 326–333. URL: http://www.ajcn.org/cgi/content/full/79/2/326 (accessed 09.20.2010).

Campbell, M., et al. 2004. Effect of red clover-derived isoflavone supplementation on insulin-like growth factor, lipid and antioxidant status in healthy female volunteers: A pilot study. Eur. J. Clin. Nutr., 58, 173–179. URL: http://www.nature.com/ejcn/journal/v58/n1/full/1601764a.html (accessed 09.20.2010).

Huntley, A. 2004. Drug-herb interactions with herbal medicines for menopause. J. Br. Menopause Soc., 10 (4), 162–165. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15667753 (accessed 12.11.2009).

Krebs, E., et al. 2004. Phytoestrogens for treatment of menopausal symptoms: A systematic review. Obstet. Gynecol., 104 (10), 824–836. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15458907 (accessed 09.16.2010).

Lam, A., et al. 2004. Effect of red clover isoflavones on cox-2 activity in murine and human monocyte/macrophage cells. Nutr. Cancer, 49 (1), 89–93. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15456640 (accessed 09.20.2010).

Piersen, C., 2004. Chemical and biological characterization and clinical evaluation of botanical dietary supplements: A phase I red clover extract as a model. Curr. Med. Chem., 11 (11), 1361–1374. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15180571 (accessed 09.16.2010).

Powles, T. 2004. Isoflavones and women’s health. Breast Cancer Res., 6, 140–142. URL: http://breast-cancer-research.com/content/6/3/140 (accessed 09.20.2010).

Roberts, D., et al. 2004. Inhibition of extrahepatic human cytochromes P450 1A1 and 1B1 by metabolism of isoflavones found in Trifolium pratense (red clover). J. Agric. Food Chem., 52 (21), 6623–6632. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15479032 (accessed 09.16.2010).

Blakesmith, S., et al. 2003. Effects of supplementation with purified red clover (Trifolium pratense) isoflavones on plasma lipids and insulin resistance in premenopausal women. Br. J. Nutr., 89 (4), 467–474. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12654164 (accessed 09.20.2010).

Boué, et al. 2003. Evaluation of the estrogenic effects of legume extracts containing phytoestrogens. J. Agric. Food Chem., 51 (8), 2193–2199. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12670155 (accessed 09.16.2010).

Chan, H., et al. 2003. The red clover (Trifolium pratense) isoflavone biochanin A modulates the biotransformation pathways of 7,12-dimethylbenz[a]anthracene. Br. (1), 87–92. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12844379 (accessed 09.16.2010).

Mallis, L., et al. 2003. Determination of rat oral bioavailability of soy-derived phytoestrogens using an automated on-column extraction procedure and electrospray tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 796, 71–86. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/14552818 (accessed 09.17.2010).

Tice, J., et al. 2003. Phytoestrogen supplements for the treatment of hot flashes: The Isoflavone Clover Extract (ICE) Study: A randomized controlled trial. JAMA, 290 (2), 207–214. URL: >http://jama.ama-assn.org/cgi/content/full/290/2/207 (accessed 03.04.2010).

Abebe, W. 2002. Herbal medication: Potential for adverse interactions with analgesic drugs. J. Clin. Pharm. Ther., 27 (6), 391–401. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12472978 (accessed 12.11.2009).

Adlercreutz, J. 2002. Phyto-oestrogens and cancer. Lacet Oncol., 3 (6), 364–373. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12107024 (accessed 09.21.2010).

Burdette, J., et al. 2002. Trifolium pratense (red clover) exhibits estrogenic effects in vivo in ovariectomized Sprague–Dawley rats. J. Nutr., 132 (1), 27–30. URL: http://jn.nutrition.org/cgi/content/full/132/1/27 (accessed 09.21.2010).

Nelsen, J., et al. 2002. Red clover (Trifolium pratense) monograph: A clinical decision support tool. J. Herb. Pharm., 2 (3), 49–72. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15277090 (accessed 09.21.2010).

Peter, H. et al. 2002. Isoflavones from red clover (Promensil) significantly reduce menopausal hot flush symptoms compared with placebo. Maturitas., 42 (3), 187-193. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12161042(accessed 01.19.2011).

van de Weijer, P., & Barentsen, R. 2002. Isoflavones from red clover (Promensil) significantly reduce menopausal hot flush symptoms compared with placebo. Maturitas, 42 (3), 187–193. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12161042 (accessed 09.21.2010).

Wuttke, W., et al. 2002. Phytoestrogens for hormone replacement therapy? J. Steroid Biochem. Mol. Biol., 83 (1–5), 133–147. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12650710 (accessed 09.16.2010).

Clifton–Bligh, P., et al. 2001. The effect of isoflavones extracted from red clover (Rimostil) on lipid and bone metabolism. Menopause, 8 (4), 259–265. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11449083 (accessed 09.21.2010).

Dornstauder, E., et al. 2001. Estrogenic activity of two standardized red clover extracts (Menoflavon) intended for large scale use in hormone replacement therapy. J. Steroid Biochem. Mol. Biol., 78 (1), 67–75. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11530286 (accessed 09.21.2010).

Fugh–Berman, A., & Kronenberg, F. 2001. Red clover (Trifolium pratense) for menopausal women: Current state of knowledge. Menopause, 8 (5), 333–337. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11528359 (accessed 09.20.2010).

Hale G., et al. 2001. A double-blind randomized study on the effects of red clover isoflavones on the endometrium. Menopause, 8, 338-346. URL (abstract): (accessed 01.04.2010). URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11528360 (accessed 09.21.2010).

Ashby, J., et al. 1999. Induction of hyperplasia and increased DNA content in the uterus of immature rats exposed to coumestrol. Environ. Health Perspect., 107 (10), 819–822. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1566597/?tool=pubmed (accessed 12.11.2009).

Hsu, J–T., et al. 1999. Effects of the dietary phytoestrogen biochanin A on cell growth in the mammary carcinoma cell line MCF-7. J. Nutr. Biochem., 10 (9), 510–517. URL (abstract): http://cat.inist.fr/?aModele=afficheN&cpsidt=1984990 (accessed 09.17.2010).

Boyd, N., et al. 1998. Mammographic densities and breast cancer risk. Cancer Epidemiol. Biomarkers, 7 (12), 1133-1144. URL: http://cebp.aacrjournals.org/content/7/12/1133.long (accessed 01.19.2011).

Kelly, G., et al. 1998. Standardized red clover extract clinical monograph, pp 3–12. Seattle, WA: Natural Products Research Consultants, Inc.

Zava, D., et al. 1998. Estrogen and progestin bioactivity of foods, herbs, and spices. Proc. Soc. Exp. Biol. Med., 217 (3), 369–378. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/9492350 (accessed 08.24.2010).


Wild yam ( Dioscorea villosa)

Yoshikawa, M., et al. 2007. Medicinal flowers. XII. (1). New spirostane-type steroid saponins with antidiabetogenic activity from Borassus flabellifer. Chem. Pharm. Bull. (Tokyo), 55 (2), 308–316.

Jeon, J., et al. 2006. Effect of ethanol extract of dried Chinese yam (Dioscorea batatas) flour containing dioscin on gastrointestinal function in rat model. Arch. Pharm. Res., 29 (5), 348–353.

Sarchielli, P., et al. 2006. Practical considerations for the treatment of elderly patients with migraine. Drugs Aging, 23 (6), 461–489.

Ulbricht, C., & Basch, E., Eds. 2005. Natural Standard Herb & Supplement Reference: Evidence-based Clinical Reviews. Natural Standard Research Collaboration. NY: Elsevier Mosby.

Wu, W., et al. 2005. Estrogenic effect of yam ingestion in healthy postmenopausal women. J. Am. Coll. Nutr., 24, 235–243.

[No authors listed.] 2004. Final report of the amended safety assessment of Dioscorea villosa (wild yam) root extract. Int. J. Toxicol., 23 (Suppl. 2), 49–54.

Rahmintoola, H., et al. 2004. Reduction in the therapeutic intensity of abortive migraine drug use during ACE inhibition therapy — a pilot study. Pharmacoepidemiol. Drug Saf., 13 (1), 41–47.

Benghuzzi, H., et al. 2003. The effects of sustained delivery of diosgenin on the adrenal gland of female rats. Biomed. Sci. Instrum., 39, 335–340.

Kwon, C., et al. 2003. Anti-obesity effect of Dioscorea nipponica Makino with lipase-inhibitory activity in rodents. Biosci. Biotechnol. Biochem., 67 (7), 1451–1456.

Hsu, F., et al. 2002. Both dioscorin, the tuber storage protein of yam (Dioscorea alata cv. Tainong No. 1), and its peptic hydrolysates exhibited angiotensin converting enzyme inhibitory activities. J. Agric. Food Chem., 50 (21) 6109-6113. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12358488 (accessed 06.26.2007).

Bender, W. 1995. ACE inhibitors for prophylaxis of migraine headaches. Headache, 35 (8), 470–471.

M-Boost references

Our M-Boost is doctor-formulated to be complete, natural, bioavailable and manufactured to pharmaceutical standards.

The following articles and studies, arranged alphabetically, represent a sampling of the research on the constituents of M-Boost.

Vitamin D

Belenchia, A.M., et al. 2013. Correcting vitamin D insufficiency improves insulin sensitivity in obese adolescents: a randomized controlled trial. Am J Clin Nutr. 97(4):774-81. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23407306 (accessed 05.07.2013).

Biancuzzo, R.M. 2013. Serum concentrations of 1,25-dihydroxyvitamin D2 and 1,25-dihydroxyvitamin D3 in response to vitamin D2 and vitamin D3 supplementation. J Clin Endocrinol Metab. 98(3):97-9). URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23386645 (accessed 05.07.2013).

Caron-Jobin, M., et al. 2011. Elevated serum 25(OH)D concentrations, vitamin D, and calcium intakes are associated with reduced adipocyte size in women. Obesity (Silver Spring). 19(7):1335-41. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21527900 (accessed 05.13.2013).

Forsythe, L.K., et al. 2012. Effect of adiposity on vitamin D status and the 25-hydroxychholecalciferol response to supplementation in healthy young and older Irish adults. Br J Nutr. 107(1):126-34. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21733320 (Accessed 05.13.2013).

Fung, G. J., et al. 2012. Vitamin D intake is inversely related to risk of developing metabolic syndrome in African American and white men and women over 20 y: the Coronary Artery Risk Development in Young Adults study. Am J Clin Nutr. 96(1):24-9. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22648727 (accessed 05.09.2013).

LeBlanc, E.S., et al. 2012. Associations between 25-hydroxyvitamin D and weight gain in elderly women. J Womens Health (Larchmt). 21(10):1066-73, URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22731629 (accessed 05.07.2013).

Manios, Y., et al. Changes in body composition following a dietary and lifestyle intervention trial: the postmenopausal health study. Maturitas. 62(1): 58-65. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19118956 (accessed 05/13/2013).

Nagpal, J., et al. A double-blind, randomized, placebo-controlled trial of the short-term effect of vitamin D3 supplementation on insulin sensitivity in apparently healthy, middle-aged, centrally obese men. Diabet Med. 26(1):19-27. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19125756 (accessed 05.13.2013).

Nazarian, S., et al. Vitamin D3 supplementation improves insulin sensitivity in subjects with impaired fasting glucose. Transl Res. 158(5):276-81. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22005267 (accessed 05.14.2013).

Nikooyeh, B., et al. Daily consumption of vitamin D- or vitamin D + calcium-fortified yogurt drink improved glycemic control in patients with type 2 diabetes: a randomized clinical trial. Am J Clin Nutr. 93(4): 764-71. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21289226 (accessed 05.13.2013).

Salehpour, A., et al. 2012. Vitamin D3 and the risk of CVD in overweight and obese women: a randomized controlled trial. Br J Nutr. 108(10): 1866-73. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22317756 (accessed 05.13.2013).

Salehpour, A., et al. 2012. A 12-week double-blind randomized clinical trial of vitamin D3 supplementation on body fat mass in healty overweight and obese women. Nutr J. 11:78. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3514135/ (accessed 05.07.2013).

Shab-Bidar, S., et al. 2011. Regular consumption of vitamin D-fortified yogurt drink (Doogh) improved endothelial biomarkers in subjects with type 2 diabetes: a randomized double-blind clinical trial. BMC Med. 9:125. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3239240/ (accessed 05.13.2013).

Shapses, S.A., et al. 2013. Vitamin D supplementation and calcium absorption during caloric restriction: a randomized double-blind trial. Am J Clin Nutr. 97(3):637-45. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23364004 (accessed 05.06.2013).

Sneve, M., et al. 2008. Supplementation with cholecalciferol does not result in weight reduction in overweight and obese subjects. Eur J Endocinol. 159(6): 675-84. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19056900 (accessed 05.13.2013).

Tamer, G., et al. 2012. Is vitamin D deficiency an independent risk factor for obesity and abdominal obesity in women? Endokrynol Pol. 63(3):196-201. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22744625 (accessed 05.09.2013).

Yin, X., et al. 2012. Serum 25(OH)D is inversely ossociated with metabolic syndrome risk profile among urban middle-aged Chinese population. Nutr. J. 11:68. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22958612 (accessed 05.07.2013).

Zitterman, A., et al. Vitamin D supplementation enhances the beneficial effects of weight loss on cardiovascular disease risk markers. Am J Clin Nutr. 89(5): 1321-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19321573 (accessed 05.13.2013).

B Vitamins
(Thiamine, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B 12, Biotin)

Bailey, L.. & Gregory, J. 1999. Folate metabolism and requirements. J. Nutr., 129, 779–782.

Ball, G. 2006. Chapter 11: Pantothenic Acid. In Vitamins in Foods: Analysis, Bioavailability, and Stability, 211–219. Boca Raton, FL: CRC Press.

Baez–Saldana, A., et al. 2004. Effects of biotin on pyruvate carboxylase, acetyl-CoA carboxylase, propionyl-CoA carboxylase, and markers for glucose and lipid homeostasis in type 2 diabetic patients and nondiabetic subjects. Am. J. Clin. Nutr., 79, 238–243.

Baily, S. E. and Ayling, J. E. 2009. The extremely slow and variable activity of dihydrofolate reductase in human liver and its implications for high folic acid intake. Proc Natl Acad Sci USA., 106(35): 15424-15429. doi: 10.1073/pnas.0902072106. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2730961/?tool=pubmed (accessed 5/14/2012).

Baker, H., et al. 1975. Inability of chronic alcoholics with liver disease to use food as a source of folates, thiamin and vitamin B6. Am. J. Clin. Nutr., 28, 1377–1380.

Bart, S. Sr., et al. 2012. Folate status and homocysteine levels during a 24-week oral administration of folate-containign oral contraceptive: a randomized, double-blind, active-controlled, parallel-group, US-based multicenter study. Contraception. 85(1): 42-50. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22067790 (accessed 5/15/2012).

Batra, V., et al. 2010. Enhanced one-carbon flux towards DNA methylation: Effect of dietary methyl supplements against gamma-radiation-induced epigenetic modicationas. Chem Biol Interac., 183(3): 425-33. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19931232 (Accessed 5/15/2012).

Bird, L. M., et al. 2011. A therapeutic trial of pro-methylation dietary supplements in Angelman syndrome. Am J Med Genet A., 155A(12): 2956-63. doi: 10.1002/ajmg.a.34297. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22002941 (accessed 5/14/2012).

Cagnacci, A., et al. 2009. High-dose short-term folate administration modifies ambulatory blood pressure in postmenopausal women. A placebo-controlled study. Eur J Clin Nutr. 63(10): 1266-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19603054 (accessed 5/14/2012).

Chang, N., et al. 2001. Study of the relation between proton magnetic resonance spectroscopy metabolites in the brain regions and the B vitamin status in alcoholics. Nutr. Res., 21, 811–820.

Clarke, R. 2006. Vitamin B12, folic acid, and the prevention of dementia. NEJM, 354, 2817–2819.

Colombo, V., et al. 1990. Treatment of brittle fingernails and onychoschizia with biotin: Scanning electron microscopy. J. Am. Acad. Dermatol., 23, 1127–1132.

Combs, G., 1992. Vitamin B6 (Chapter 13), and Vitamin B12 (Chapter 17). In The Vitamins: Fundamental Aspects in Nutrition and Health, 331–347; 403–419. San Diego: Academic Press.

Coppen, A., & Bailey, J. 2000. Enhancement of the antidepressant action of fluoxetine by folic acid: A randomised, placebo controlled trial. J. Affect. Disord., 60, 121–130.

Coppen, A., & Bolander-Gouaille, C. 2005. Treatment of depression: Time to consider folic acid and vitamin B12. J. Psychopharm., 19, 59–65.

Crawford, V., et al. 1999. Effects of niacin-bound chromium supplementation on body composition in overweight African-American women. Diab. Obes. Metabol., 1, 331–337.

Cravo, M., et al. 1996. Hyperhomocysteinemia in chronic alcoholism: Correlation with folate, vitamin B-12, and vitamin B-6 status. Am. J. Clin. Nutr., 63, 220–224.

Davis, B., et al. 1982. Enhanced absorption of oral vitamin B12 from a resin ascorbate administered to normal subjects. Manip. Physiol. Ter., 5, 123–127.

Duan, W., et al. 2002. Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J. Neurochem., 80, 101–110.

Eussen, S., et al. 2005. Oral cyanocobalamin supplementation in older people with vitamin B12 deficiency: A dosefinding trial. Arch. Intern. Med., 165, 1167–1172.

Fava, M., and Mischoulon, D. 2009. Folate in depression: efficacy, safety, differences in formulations, and clinical issues. J Clin Psychiatry. 70 Supple 5: 12-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19909688 (accessed 5/14/2012).

Floersheim, G. 1989. [Treatment of brittle fingernails with biotin]. Z. Hautkr., 64, 41–48.

Geohas, J., et al. 2007. Chromium picolinate and biotin combination reduces atherogenic index of plasma in patients with type 2 diabetes mellitus: A placebo-controlled, double-blinded, randomized clinical trial. Am. J. Med. Sci., 333, 145–153.

Godfrey, P. S., et al. 1990. Enhancement of recovery from psychiatric illness by methylfolate. Lancet, 336(8712): 392-5. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/1974941 (accessed 5/14/2012).

Greenberg, J. A., and Bell, S. J. 2011. Multivitamin Supplementation During Pregnancy: Emphasis on Folic Acid and L-Methylfolate. Rev Obstet Gynecol., 4 (3-4): 126-7. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3250974/?tool=pubmed (accessed 5/14/2012).

Hassing, L., et al. 1999. Further evidence on the effects of vitamin B12 and folate levels on episodic memory functioning: A population-based study of healthy very old adults. Biol. Psych., 45, 1472–1480.

Hintikka, J., et al. 2003. High vitamin B12 level and good treatment outcome may be associated in major depressive disorder. BMC Psych., 3, 17.

Hochman, L., et al. 1993. Brittle nails: Response to daily biotin supplementation. Cutis, 51, 303–305

Kelly, P., et al. 1997. Unmetabolized folic acid in serum: acute studies in subjects consuming fortified food and supplements. Am J Clin Nutr., 65(6): 1790-5. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/9174474 (accessed 5/14/2012).

Koutsikos, D., et al. 1990. Biotin for diabetic peripheral neuropathy. Biomed. Pharmacother., 44, 511–514.

Lamers, Y., et al. 2006. Red blood cell folate concentrations increase more after supplementation with [6S]-5-methyltetrahydrofolate than with folic acid in women of childbearing age. Am J Clin Nutr. 84(1): 156-61.

Lee, B., et al. 2004. Folic acid and vitamin B12 are more effective than vitamin B6 in lowering fasting plasma homocysteine concentration in patients with coronary artery disease. Eur. J. Clin. Nutr., 58, 481–487.

Levine, S., & Saltzman, A. 2004. Pyridoxine (vitamin B6) neurotoxicity: Enhancement by protein-deficient diet. J. Appl. Toxicol., 24, 497–500.

Lewerin, C., et al. 2003. Reduction of plasma homocysteine and serum methylmalonate concentrations in apparently healthy elderly subjects after treatment with folic acid, vitamin B12 and vitamin B6: A randomised trial. Eur. J. Clin. Nutr., 57, 1426–1436.

Maas, A., et al. 1998. Riboflavin and vitamin B-6 intakes and status and biochemical response to riboflavin supplementation in free-living elderly people. Am. J. Clin. Nutr. 68, 389–395.

Masse, P., et al. 1998. A cartilage matrix deficiency experimentally induced by vitamin B6 deficiency. Proc. Soc. Exp. Biol. Med., 217, 97–103.

Masse, P., et al. 1990. Morphological abnormalities in vitamin B6 deficient tarsometatarsal chick cartilage. Scanning Microsc., 4, 667–673; discussion 674.

Masse, P., et al. 1994. Vitamin B6 deficiency experimentally-induced bone and joint disorder: Microscopic, radiographic and biochemical evidence. Br. J. Nutr., 71: 919–932.

McCormick, D. 1975. Biotin. Nutr. Rev., 33, 97–102.

Meshkin, B., Blum, K. 2007. Folate nutrigenetics: a convergence of dietary folate metabolism, folic acid supplementation, and folate antagonist pharmacogenetics. Drug Metab Lett., 1(1): 55-60. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19356019 (accessed 5/14/2012).

Miller, J. 2004. Folate, cognition, and depression in the era of folic acid fortification. J. Food Sci., 69, 61–64.

Misir, R., & Blair, R. 1986. Effect of biotin supplementation of a barley-wheat diet on restoration of healthy feet, legs and skin of biotin deficient sows. Res. Vet. Sci., 40, 212-218.

Mock, D., et al. 2002. Marginal biotin deficiency during normal pregnancy. Am. J. Clin. Nutr., 75, 295–299.

Mock, D. 1991. Skin manifestations of biotin deficiency. Semin. Dermatol., 10, 296-302.

Morris, M. 2002. Folate, homocysteine, and neurological function. Nutr. Clin. Care, 5, 124–132.

Nyhan, W. 1987. Inborn errors of biotin metabolism. Arch. Dermatol., 123, 1696–1698a.

Pietrzik, K., et al. 2010. Folic acid and L-5-methyltetrahydrofolate: comparison of clinical pharmacokinetics and pharmacodynamics. Clin Pharmacokinet., 49(8): 535-48. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20608755 (accessed 5/14/2012).

Preuss, H., et al. 2000. Effects of niacin-bound chromium and grape seed proanthocyanidin extract on the lipid profile of hypercholesterolemic subjects: A pilot study. J. Med., 31, 227–246.

Rampersaud, G., et al. 2003. Folate: A key to optimizing health and reducing disease risk in the elderly. J. Am. Coll. Nutr., 22, 1–8.

Revilla–Monsalve, C., et al. 2006. Biotin supplementation reduces plasma triacylglycerol and VLDL in type 2 diabetic patients and in nondiabetic subjects with hypertriglyceridemia. Biomed. Pharmacother., 60, 182–185.

Reynolds, T., et al. 1992. Hip fracture patients may be vitamin B6 deficient. Controlled study of serum pyridoxal-5’-phosphate. Acta Orthop. Scand., 63, 635–638.

Riggs, K., et al. 1996. Relations of vitamin B-12, vitamin B-6, folate, and homocysteine to cognitive performance in the Normative Aging Study. Am. J. Clin. Nutr., 63, 306–314.

Scambi, C., et al. 2009. Preliminary evidence for cell membrane amelioration in children with cystic fibrosis by 5-MTHF and vitamin B12 supplementation: a single arm trial. PLoS One. 4(3):e4782. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19277125 (accessed 5/15/2012).

Sharp, L., Little, J. 2004. Polymorphisms in genes involved in folate metabolism and colorectal neoplasia: a HuGE review. Am J Epidemiol., 159(5): 423-43. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/14977639 (accessed 5/14/2012).

Stabler, S., & Allen, R. 2004. Vitamin B12 deficiency as a worldwide problem. Annu. Rev. Nutr., 24, 299–326.

Van Guelpen, B., et al. 2005. Folate, vitamin B12, and risk of ischemic and hemorrhagic stroke: A prospective, nested case-referent study of plasma concentrations and dietary intake. Stroke, 36, 1426–1431.

Zempleni, J., & Mock, D. 2000. Marginal biotin deficiency is teratogenic. Proc. Soc. Exp. Biol. Med., 223, 14–21.

Zempleni, J., & Mock, D. 1999. Bioavailability of biotin given orally to humans in pharmacologic doses. Am. J. Clin. Nutr., 69, 504–508.

Zhang, H., et al. 1997. Biotin administration improves the impaired glucose tolerance of streptozotocin-induced diabetic Wistar rats. J. Nutr. Sci. Vitaminol. (Tokyo), 43, 271-280.


He, Y.H., et al. 2011. The calcium-sensing receptor affects fat accumulation via effects on antilipolytic pathways in adipose tissue of rats fed low-calcium diets. J Nutr. 141(11): 1938-46. URL: http://jn.nutrition.org/content/141/11/1938.long (accessed 06.11.2013).

Josse, A.R., et al. Increased consumption of dairy foods and protein during diet – and exercise-induced weight loss promotes fat mass los and lean mass gain in overweight and obese premenopausal women. J Nutr. 141(9):1626-34. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21775530 (accessed 06.11.2013).

Laraichi, S., et al. 2013. Dietary Supplementation of Calcium may Counteract Obesity in Mice Mediated by Changes in Plasma Fatty Acids. Lipids. June 1, 2013 Epub ahead of print. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23729396 (accessed 06.11.2013).

Lewis, J.R., et al. 2011. Calcium supplementation and the risks of atherosclerotic vascular disease in older women: results of a 5-year RCT and a 4.5-year follow-up. J Bone Miner Res. 26(1): 35-41. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20614474 (accessed 06.11.2013).

Mitri, J., et al. 2011. Effects of vitamin D and calcium supplementation on pancreatic ß cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am J Clin Nutr. 94(2): 486-494. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3142723/ (accessed 06.11.2013).

Nakamura, K., et al. 2012. Effect of low-dose calcium supplements on bone loss in perimenopausal and postmenopausal Asian women: a randomized controlled trial. J Bone Miner Res. 27(11): 2264-70. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22653713 (accessed 06.11.2013).

Nobre, J.L., et al. 2012. Calcium supplementation prevents obesity, hyperleptinaemia and hyperglycaemia in adult rats programmed by early weaning. Br J Nutr. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22070983 (accessed 06.11.2013).

Nobre, J.L., et al. 2011. Calcium supplementation reverts central adiposity, leptin, and insulin resistance in adult offspring programmed by neonatal nicotine exposure. J Endocrinol. 210(3): 349-59. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21680618 (accessed 06.11.2013).

Perez-Gallardo, L., et al. 2009. Effect of calcium-enriched high-fat diet on calcium, magnesium and zinc retention in mice. Br J Nutr. 101(10): 1463-6. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18986597 (accessed 06.11.2013).

Racovan, M., et al. 2012. Calcium and vitamin D supplementation and incident rheumatoid arthritis: the Women’s Health Initiative Calcium plus Vitamin D trial. Rheumatol Int. 32(12): 3823-30. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22190273 (accessed 06.11.2013).

Rosenblum, J.L., et al. 2012. Calcium and vitamin D supplementation is associated with decreased abdominal visceral adipose tissue in overweight and obese adults. Am J Clin Nutr. 95(1): 101-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22170363 (accessed 06.11.2013).

Rossom, R.C., et al. 2012. Calcium and vitamin D supplementation and cognitive impairment in the women’s health initiative. J Am Geriatr Soc. 60(12): 2197-205. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23176129 (accessed 06.11.2013).

Shalileh, M., et al. The influence of calcium supplement on body composition, weight loss and insulin resistance in obese adults receiving low calorie diet. J Res Med Sci. 15(4): 191-201. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21526081 (accessed 06.11.2013).

Torres, M.R., et al. 2010. Effects of a high-calcium energy-reduced diet on abdominal obesity and cardiometabolic risk factors in obese Brazillian subjects. Int J Clin Pract. 64(8): 1076-83. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20642707 (accessed 06.11.2013).

Yanovski, J.A., et al. 2009. Effects of calcium supplementation on body weight and adiposity in overweidht and obese adults: a randomized trial. Ann Intern Med. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19528561 (accessed 06.11.2013).

Yin, J., et al. 2010. Calcium supplementation for 2 years improves bone mineral accretion and lean body mass in Chinese adolescents. Asia Pac J Clin Nutr. 19(2): 152-60. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20460227 (accessed 06.11.2013).

Zemel, M.B. 2004. Role of calcium and dairy products in energy partitioning and weight management. Am J Clin Nutr. 79(5): 907S-912S. URL: http://ajcn.nutrition.org/content/79/5/907S.long (accessed 06.11.2013).


Abayomi, A.I., et al. 2011. Effect of Magnesium pre-treatment on alloxan induced hyperglycemia in rats. Afr Health Sci. 11(1): 79-84. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21572861 (accessed 06.11.2013).

Abdelmalik, P.A., et al. 2012. Magnesium as an effective adjunct therapy for drug resistant seizures. Can J Neurol Sci. 39(3): 323-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22547512 (accessed 06.11.2013).

Abbott, L., & Rude, R. 1993. Clinical manifestations of magnesium deficiency. Miner. Electrolyte Metab. 19, 314–322.

Carpenter, T.O., et al. 2006. A randomized controlled study of effets of dietary magnesium oxide supplementation on bone mineral content in healthy girls. J Clin Endocrinol Metab. 91(12):4866-72. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17018656 (accessed 06.11.2013).

Chacko, S.A., et al. 2011. Magesium supplementation, metabolic and inflammatory markers, and global genomic and proteomic profiling: a randomized, double-blind, controlled, crossover trial in overweight individuals. Am J Clin Nutr. 93(2): 463-473. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3021435/ (accessed 06.11.2013).

Creedon, A., et al. 1999. The effect of moderately and severely restricted dietary magnesium intakes on bone composition and bone metabolism in the rat. Br. J. Nutr., 82, 63–71.

Dreosti, I. 1995. Magnesium status and health. Nutr. Rev., 53, S23–S27.

Farvid, M.S., et al. 2011. Improving neuropathy scores in type 2 diabetic patients using micronutrients supplementation. Diabetes Res Clin Pract. 93(1): 86-94. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21496936 (accessed 06.11.2013).

Hadjistavri, L.S., et al. 2010. Beneficial effects of oral magnesium supplementation on insulin sensitivity and serum lipid profile. Med Sci Monit. 16(6): CR307-312. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20531272 (accessed 06.11.2013).

Hartwig, A. 2001. Role of magnesium in genomic stability. Mutat. Res., 475, 113–121.

Higdon, J. & Drake, V.J., 2007. The Linus Pauling Institute, Oregon State University. Web (http://lpi.oregonstate.edu/infocenter/minerals/magnesium/) (accessed 06.13.2013).

Houston, M. 2011. The role of magnesium in hypertension and cardiovascular disease. J Clin Hypertens (Greenwich). 13(11): 843-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22051430 (accessed 06.11.2013).

Ige, O.A., et al. 2010. Pretreatment effect of magnesium on alloxan induced hyperglycemia in rats. Afr J Med Med Sci. 39 Suppl:103-7 URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22416651 (accessed 06.10.2013).

Lal, J., et al. 2003. Effect of oral magnesium supplementation on lipid profile and blood glucose of patients with type 2 diabetes mellitus. J Assoc Physicians India. 51:37-42. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12693452 (accessed 06.11.2013).

Luoma, H., et al. 1998. Seven weeks feeding of magnesium and fluoride modifies plasma lipids of hypercholesterolaemic rats in late growth phase. Magnes Res. 11(4): 271-82. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/9884985 (accessed 06.11.2013).

McCarty, M.F. 2005. Nutraceutical resources for diabetes prevention – an update. Med Hypotheses. 64(1): 151-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15533633 (accessed 06.10.2013).

Mooren, F.C., et al. 2011. Oral magnesium supplementation reduces insulin resistance in non-diabetic subjects – a double-blind, placebo-controlled, randomized trial. Diabetes Obes Metab. 13(3): 281-4. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21205110 (accessed 06.11.2013).

Mountokalakis, T. 1987. Effects of aging, chronic disease, and multiple supplements on magnesium requirements. Magnesium, 6, 5-11.

Nielson, F.H., et al. 2010. Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnes Res. 23(4): 158-68. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21199787 (accessed 06.11.2013).

Nielsen, F.H., et al. 2007. Dietary magnesium deficiency induces heart rhythm changes, impairs glucose tolerance, and decreases serum cholesterol in post menopausal women. J Am Coll Nutr. 26(2):121-32. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17536123 (accessed 06.10.2013)/

Olatunji, L.A. & Soladoye, A.O. 2007. Effect of increased magnesium intake on plasma cholesterol, triglyceride and oxidative stress in alloxan-diabetic rats. Afr J Med Med Sci. 36(2): 155-61. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19205579 (accessed 06.11.2013).

Paolisso, G., et al. 1992. Daily magnesium supplements improves glucose handling in elderly subjects. Am J Clin Nutr. 55(6): 1161-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/1595589 (accessed 06.11.2013).

Rodriguez-Moran, M., et al. 2011. The role of magnesium in type 2 diabetes: a brief based-clinical review. Magnes Res. 24(4):156-62. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22198525 (accessed 06.11.2013).

Rasmussen, H.S., et al. 1989. Influence of magnesium substitution therapy on blood lipid composition in patients with ischemic heart disease. A double-blind, placebo controlled study. Arch Intern Med. 149(5): 1050-3. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/2719498 (accessed 06.11.2013).

Shivakumar, K., & Kumar, B. 1997. Magnesium deficiency enhances oxidative stress and collagen synthesis in vivo in the aorta of rats. Int. J. Biochem. Cell. Biol., 29, 1273–1278.

Sojka, J., & Weaver, C. 1995. Magnesium supplementation and osteoporosis. Nutr. Rev., 53, 71–74.

Song, Y., et al. 2006. Effects of oral magnesium supplementation on glycaemic control in Type 2 diabetes: a meta-analysis of randomized double-blind controlled trials. Diabet Med. 23(10): 1050-6. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed?cmd=Retrieve&dopt=Citation&list_uids=16978367 (accessed 06.05.2013).

Terighat Esfanjani, A., et al. 2012. The effects of magnesium, L-carnitine, and concurrent magnesium-L-carnitine supplementation in migraine prophylaxis. Biol Trace Elem Res. 150(1-3):42-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22895810 (accessed 06.11.2013).

Virag, V., et al. 2011. [Effects of magnesium supplementation on calcium and magnesium levels, and redox homeostasis in normolipidemic and food-induced hyperlipidemic rats]. Orv Hetil. 152(27): 1075-81. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21676674 (accessed 06.11.2013).

Volpe, S., et al. 1993. The relationship between boron and magnesium status and bone mineral density in the human: A review. Magnesium Res., 6, 291–296.


Sharma, S., et al. 2011. Beneficial effect of chromium supplementation on glucose, HbA(1)C and lipid variables in individuals with newly onset type-2 diabetes. J. Trace Elem. Med. Biol. [Epub ahead of print] URL: http://www.ncbi.nlm.nih.gov/pubmed/21570271 (accessed 06.20.2011).

Albarracin, C., et al. 2008. Chromium picolinate and biotin combination improves glucose metabolism in treated, uncontrolled overweight to obese patients with type 2 diabetes. Diabetes Metab. Res. Rev., 24 (1), 41-51. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17506119 (accessed 10.25.2011).

Anton, S., et al. 2008. Effects of chromium picolinate on food intake and satiety. Diabetes Technol. Ther., 10 (5), 405-412. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2753428/?tool=pubmed (accessed 10.25.2011).

Lukaski, H., et al. 2007. Chromium picolinate supplementation in women: Effects on body weight, composition, and iron status. Nutrition, 23 (3), 187-195. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17291720 (accessed 10.25.2011).

Broadhurst, C., & Domenico, P. 2006. Clinical studies on chromium picolinate supplementation in diabetes mellitus — a review. Diabetes Technol. Ther., 8 (6), 677-687. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17109600 (accessed 10.25.2011).

Singer, G., & Geohas, J. 2006. The effect of chromium picolinate and biotin supplementation on glycemic control in poorly controlled patients with type 2 diabetes mellitus: A placebo-controlled, double-blinded, randomized trial. Diabetes Technol. Ther., 8 (6), 636-643. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17109595 (accessed 10.25.2011).

Wang, Z., et al. 2006. Chromium picolinate enhances skeletal muscle cellular insulin signaling in vivo in obese, insulin-resistant JCR:LA-cp rats. J. Nutr., 136 (2), 415-420. URL: http://jn.nutrition.org/content/136/2/415.long (accessed 10.25.2011).

Docherty, J., et al. 2005. A double-blind, placebo-controlled, exploratory trial of chromium picolinate in atypical depression: Effect on carbohydrate craving. J. Psychiatr. Pract., 11 (5), 302-314. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16184071 (accessed 10.25.2011).

Vincent, J. 2003. The potential value and toxicity of chromium picolinate as a nutritional supplement, weight loss agent and muscle development agent. Sports Med., 33 (3), 213-230. URL (abstract): (accessed 10.25.2011).

Cefalu, W., et al. 2002. Oral chromium picolinate improves carbohydrate and lipid metabolism and enhances skeletal muscle Glut-4 translocation in obese, hyperinsulinemic (JCR-LA corpulent) rats. J. Nutr., 132 (6), 1107–1114. URL: http://jn.nutrition.org/content/132/6/1107.long (accessed 10.25.2011).

Sphaeranthus indicus

Bafna, A.R. & Mishra, S.H. 2007. Immunomodulatory activity of petroleum ether extract of lfower heads of Pshaeranthus indicus Linn. J Herb Pharmacother. 7(1): 25-37. URL (astract): http://www.ncbi.nlm.nih.gov/pubmed/17594985 (accessed 05/02/2013).

Chakrabarti, D., et al. 2012. NPS31807, a standardized extract from Sphaeranthus indicus, inhibits inflammatory, migratory and proliferative activity in keratinocytes and immune cells. Pharmacology & Pharmacy. 3:178-194. URL: http://www.scirp.org/journal/PaperInformation.aspx?paperID=18720& (accessed 05/02/2013).

Doss, A. 2009. Preliminary phytochemical screening of some Indian Medicinal Plants. Anc Sci Life. 29(2): 12-6. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/22557345 (accessed 03/19/2013).

Fonseca, L.c., et al. 2010. 7-hydroxyfullanolide, a sesquiterpene lactone, inhibits pro-inflammatory cytokine production from immune cells and is orally efficacious in animal models of inflammation. Eur J Pharmacol. 644(1-3): 220-9. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20621086 (accessed 05/02/2013).

Galani, V. J., et al. 2010. Sphaeranthus indicus Linn.: A phytopharmacological review. Int J Ayurveda Res. 1 (4): 247-253. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3059449/ (accessed 03/19/2013).

Ghaisas, M., et al. 2010. Preventive effect of Phaeranthus indicus during progression of glucocorticoid-induced insulin resistance in mice. Pharm Biol. 48(12): 1371-5. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/20738176 (accessed 3/19/2013).

Johri, R., et al. 2009. Antidiabetic effects of polyherbal preparation as compared to standard allopathic drugs in alloxan induced diabetic albino rats. Biochemical and Cellular Archives. 9(1): 55-62. URL (abstract only): http://www.cabdirect.org/abstracts/20093125920.html;jsessionid=D4572405B9290CBDBE272A4A0640793F?gitCommit=4.13.20-5-ga6ad01a (accessed 03/19/2013).

Kumar, V.P., et al. 2006. Search for antibacterial and antifungal agents from selected Indian medicinal plants. J Ethnopharmacol. 107(2): 182-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16678369 (accessed 05/02/2013).

Lau, F.C., et al. 2011. Efficacy and tolerability of Meratrim – a novel formulation for weight management: Results from two, randomized, double-blind, placebo-controlled clinical studies. Presented 10/3/2011 at the 29th Annual Obesity Society Annual Meeting. Poster number 590-P.

Lau, C.F., et al. 2011. Efficacy and tolerability of Merastin™ - a novel herbal formulation for weight management: a randomized, double-blind, placebo-controlled clinical study. FASEB J. 25: (Meeting Abstract Supplement) 601.9. Presented at Experimental Biology 2011, Washington, DC, April 10,2011 – Program No.601.9, Poster A278. URL (abstract): http://www.fasebj.org/cgi/content/meeting_abstract/25/1_MeetingAbstracts/601.9 (accessed 04/16/2013).

Mathew, J. E., et al. 2012. Effect of ethanol extract on Sphaeranthus indicus on cisplatin-induced nephrotoxicity in rats. . Nat Prod Res. 26(10): 933-8. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/21790496 (accessed 03/19/2013).

Mishra, B.B., et al. 2007. A novel flavonoid C-glycoside from Sphaeranthus indicus L. (family Compositae). Molecules. 12(10): 2288-91. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17978758 & http://www.mdpi.com/1420-3049/12/10/2288 (full text) (accessed 05/01/2013).

Nahata, A., et al. 2012. Sphaeranthus indicus Induces Apoptosis Through Mitochrondrial-Dependent Pathway in HL-60 Cells and Exerts Cytotoxic Potential on Several Human Cancer Cell Lines. Integr Cancer Ther. [Epub ahead of print]. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/22914874 (accessed 03/19/2013).

Nahata, A., Dixit, V. K. 2011. Sphaeranthus indicus attenuates testosterone induced prostatic hypertrophy in albino rats. Phytother Res. 25(12): 1839-48. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/21503998 (accessed 03/19/2013).

Nanda, B. K., et al. 2010. Anti-inflammatory activity of whole parts of Sphaeranthus indicus Linn. Der Pharmacia Lettre. 2 (1) 181-188. URL: http://scholarsresearchlibrary.com/DPL-vol2-iss1/DerPharmaciaLettre-%202010-2-1-181-188.pdf (accessed 03/19/2019).

Patel, M. B., Amin, D. 2012. Sphaeranthus indicus flower derived constituents exhibits synergistic effect against acetylcholinesterase and possess potential antiamnestic activity. J Complement Integr Med. 9: Aricle 23. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/23023564 (accessed 03/19/2013).

Pande V V, Dubey S. 2009. Antihyperlipidemic activity of Sphaeranthus indicus on atherogenic diet induced hyperlipidemia in rats. Int J Green Pharm. 3:159-61. URL: http://www.greenpharmacy.info/text.asp?2009/3/2/159/54911 (accessed 03/19/2013).

Prabhu, K. S., et al. 2008. Antidiabetic properties of the alcoholic extract of Sphaeranthus indicus in streptozotocin-nicotinamide diabetic rats. J Pharm Pharmacol. 60(7): 909-16. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/18549678 (accessed 03/19/2013).

Ramachandran, S., et al. 2011. Investigation of Antidiabetic, Antihyperlipidemic, and In Vivo Antioxidant Properties of Sphaeranthus indicus Linn. in Type 1 Diabetic Rats: An Identification of Possible Biomarkers. Evid Based Complement Alternat Med. Pii: 571721. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/20953435 (accessed 03/19/2013).

Schneider, R. H., et al. 2002. Disease prevention and health promotion in the aging with a traditional system of natural medicine – Maharishi Vedic Medicine (MVM). J Aging Health. 14(1): 57-78. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2211377/ (accessed 03/19/2013).

Sharma, R. K., Patki, P. S. 2010. Double-blind, placebo-controlled clinical evaluation of an Ayurvedic formulation (GlucoCare capsules) in non-insulin dependent diabetes mellitus. J Ayurvedic Integr Med. 1 (1): 45-51. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3149392/ (accessed 03/19/2013).

Shirwaikar, A., et al. 2006. In vitro antioxidant studies of Sphaeranthus indicus (Linn). Indian J Exp Biol. 44 (12): 993-6. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/17176673 (accessed 03/19/2013.

Srinivasan, K. K., et al. 2008. Effect of Sphaeranthus indicus on gentamicin induced acute renal failure in rats. Indian J Pharmacol. 40(Suppl 2, #123): S66–S91. URL (abstract only): http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3086144/ (accessed 03/19/2013).

Stern, J.S., et al. 2012. Efficacy and tolerability of a novel herbal formulation for weight management. Obesity. Epub ahead of print. URL (abstract): http://onlinelibrary.wiley.com/doi/10.1002/oby.20211/abstract (accessed 04/16/2013).

Garcinia mangostana

Bumrungpert, A., Et al. 2010. Xanthones from mangosteen inhibit inflammation in human macrophages and in human adipocytes exposed to macrophage-conditioned media. J Nutr. 140(4): 842-7. URL (abract): http://www.ncbi.nlm.nih.gov/pubmed/20181789 (accessed 04/23/2013).

Bumrungpert, A., et al. 2009. Xanthones from Mangosteen Prevent Lipopolysaccharide-Mediated Inflammation and Insulin Resistance in Primary Cultures of Human Adipocytes. The Journal of Nutrition. 139 (6) 1185-1191. URL (abstract only): http://jn.nutrition.org/content/139/6/1185.short (accessed 3/26/2013).

Chomnawang, M.T., et al. 2007. Effect of Garcinia mangostana on inflammation caused by Propionibacterium acnes. Fitoterapia. 78(6): 401-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17644272 (accessed 04/24/2013).

Devalaraja, S., et al. 2011. Exotic fruits as therapeutic complements for diabetes, obesity and metabolic syndrome. Food Research International. 44 (7): 1856-1865. URL (abstract only): http://www.sciencedirect.com/science/article/pii/S0963996911002250 (accessed 3/26/2013).

Heymsfield, S.B., et al. 1998. Garcinia cambogia (hydroxycitric acid) as a potential antiobesity agent: a randomized controlled trial. JAMA. 280(18): 1596-600. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/9820262 (accessed 04/16/2013).

Jena, B.S., et al. 2002. Chemistry and biochemistry of (-)-hydroxycitric acid from Garcinia. J Agric Food Chem. 50(1):10-22. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11754536 (accessed 04/16/2013).

Jiang, H. Z., et al. 2010. Fatty acid synthase inhibitors of phenolic constituents isolated from Garcinia mangostana. Bioorganic & Medicinal Chemistry Letters. 20(20): 6045-47. URL (abstract only): http://www.sciencedirect.com/science/article/pii/S0960894X10011844 (accessed 03/20/2013).

Jujun, P., et al. 2008. Acute and Repeated Dose 28-Day Oral Toxicity Study of Garcinia manostana Linn. Rind Extract. J. Nat. Sci. 7(2): 199-208. URL: http://www.thaiscience.info/journals/Article/Acute%20and%20repeated%20dose%2028-day%20oral%20toxicity%20study%20of%20garcinia%20mangostana%20linn.%20rind%20extract.pdf (accessed 3/26/2013).

Lau, F.C., et al. 2011. Efficacy and tolerability of Meratrim – a novel formulation for weight management: Results from two, randomized, double-blind, placebo-controlled clinical studies. Presented 10/3/2011 at the 29th Annual Obesity Society Annual Meeting. Poster number 590-P.

Lau, C.F., et al. 2011. Efficacy and tolerability of Merastin™ - a novel herbal formulation for weight management: a randomized, double-blind, placebo-controlled clinical study. FASEB J. 25: (Meeting Abstract Supplement) 601.9. Presented at Experimental Biology 2011, Washington, DC, April 10,2011 – Program No.601.9, Poster A278. URL (abstract): http://www.fasebj.org/cgi/content/meeting_abstract/25/1_MeetingAbstracts/601.9 (accessed 04/16/2013).

Leonhardt, M. & Langhans, W. 2002. Hydroxycitrate has long-term effects on feeding behavior, body weight regain and metabolism after body weight loss in male rats. J Nutr. 132(7): 1977-82. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12097679 (accessed 04/24/2013).

Leontowicz, H., et al. 2006. Bioactive properties of Snake fruit (Salacca edulis Reinw) and Mangosteen (Garcinia mangostana) and their influence on plasma lipid profile and antioxidant activity in rats fed cholesterol. European Food Research and Technology. 223(5): 697-703. URL (abstract only): http://link.springer.com/article/10.1007%2Fs00217-006-0255-7?LI=true# (accessed 03/20/2013).

Loo, A.E. & Huang, D. 2007. Assay-guided fractionation study of alpha-amylase inhibitors from Garcinia mangostana pericarp. J Agric Food Chem. 55(24): 9805-10. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17960880 (accessed 04/24/2013).

Manaharan, T., et al. 2012. Tropical Plant Extracts as Potential Antihyperglycemic Agents. Molecules. 17(5): 5915-5923. URL: http://www.mdpi.com/1420-3049/17/5/5915 (accessed 3/26/2013).

Mattes, R.D. & Bormann, L. 2000.0 Effects of (-)-hydroxycitric acid on appetite variables. Physiol Behav. 71(1-2):87-94. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11134690 (accessed 04/16/2013).

Moongkarndi, P., et al. 2004. Antiproliferation, antioxidation and induction of apoptosis by Garcinia mangostana (mangosteen) on SKBR3 human breast cancer cell line. J Ethnopharmacol. 90(1): 161-6. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/14698525 (accessed 04/24/2013).

Ngawhirunpat, T., et al. 2010. Antioxidant, free radical-scavenging activity and cytotoxicity of different solvent extracts and their phenolic constituents from the fruit hull of mangosteen (Garcinia mangostana). Pharm Biol. 48(1): 55-62. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20645756 (accessed 04/23/2013).

Pedraza-Chaverri, J., et al. 2008. Medicinal properties of mangosteen (Garcinia mangostana). Food Chem Toxicol. 46(10): 3227-39. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/18725264 (accessed 03/20/2013).

Preuss, H.G., et al. 2004. Effects of a natural extract of (-)-hydroxycitric acid (HCA-SX) and a combination of HCA-SX plus niacin-bound chromium and Gymnema sylvestre extract on weight loss. Diabetes Obes Metab. 6(3):171-80. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15056124?dopt=Abstract (accessed 04/16/2013).

Rao, R.N. & Sakariah, K.K. 1988. Lipid-lowering and antiobesity effect of (--) – hydroxycitric acid. Nutrition Research. 8(2): 209-212. URL (abstract): http://www.sciencedirect.com/science/article/pii/S0271531788800241 (04/24/2013).

Ryu, H. W., et al. 2011. Alpha-glucosidase inhibition and antihyperglycemic activity of prenylated xanthones from Garcinia mangostana. Phytochemistry. 72 (17): 2148-2154. URL (abstract only): http://www.sciencedirect.com/science/article/pii/S0031942211003736 (accessed 3/26/2013).

Stern, J.S., et al. 2012. Efficacy and tolerability of a novel herbal formulation for weight management. Obesity. Epub ahead of print. URL (abstract): http://onlinelibrary.wiley.com/doi/10.1002/oby.20211/abstract (accessed 04/16/2013).

Tang, Y.P., et al. 2009. Effect of a mangosteen dietary supplement on human immune function: a randomized, double-blind, placebo-controlled trial. J Med Food. 12(4): 755-63. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19697997

Westerterp-Plantenga, M.S. & Kovacs, E.M.R. The effect of (-)-hydroxycitrate on energy intake and satiety in overweight humans. International Journal of Obesity. 26: 870-872. URL : http://www.ncbi.nlm.nih.gov/pubmed/12097679 (accessed 04/24/2013).

Williams, P., et al. 1995. Mangostin inhibits the oxidative modification of human low density lipoprotein. Free Radic Res. 23(2): 175-84. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/7581813 (accessed 04/24/2013).

Yu, L., et al. 2007. Phenolics from hull of Garcinia mangostana fruit and their antioxidant activities. Food Chemistry. 104(1): 176-81. URL (abstract only): http://www.sciencedirect.com/science/article/pii/S030881460600882X (accessed 03/20/2013).

Zarena, A. S., Sankar, K. U. 2009. A study of antioxidant properties from Garcinia mangostana L. pericarp extract. Acta Sci. Pol., Technol. Aliment. 8(1): 23-34. URL: http://www.food.actapol.net/pub/3_1_2009.pdf (accessed 03/20/2013).

Green Tea Extract

Brown, A., et al. 2011. Health effects of green tea catechins in overweight and obese men: A randomised controlled cross-over trial. Br. J. Nutr. [Epub ahead of print.] URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21736785 (accessed 10.21.2011).

Jeukendrup, A., & Randell, R. 2011. Fat burners: Nutrition supplements that increase fat metabolism. Obes. Rev., 12 (10), 841-851. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21951331 (accessed 10.25.2011).

Sae-tan, S., et al. 2011. Weight control and prevention of metabolic syndrome by green tea. Pharmacol. Res., 64 (2), 146-154. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21193040 (accessed 10.21.2011).

Reinbach, H., et al. 2009. Effects of capsaicin, green tea and CH-19 sweet pepper on appetite and energy intake in humans in negative and positive energy balance. Clin. Nutr., 28 (3), 260-265. URL (abstract): http://www.clinicalnutritionjournal.com/article/S0261-5614(09)00023-5/fulltext (accessed 04.02.2013).

Bose, M., et al. 2008. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, inhibits obesity, metabolic syndrome, and fatty liver disease in high-fat-fed mice. J. Nutr., 138 (9), 1677-83. URL: http://jn.nutrition.org/content/138/9/1677.long (accessed 10.21.2011).

Boschmann M and Thielecke F. 2007. The effects of epigallocatechin-3-gallate on thermogenesis and fat oxidation in obese men: a pilot study. J Am Coll Nutr. 26(4):389S-395S. URL: http://www.jacn.org/content/26/4/389S.full?sid=2ff39e8c-0b65-441b-977b-60a30cb3b729 (accessed 04.02.2013).

Belza A, Jessen AB. 2005. Bioactive food stimulants of sympathetic activity: effect on 24-h energy expenditure and fat oxidation. Eur J Clin Nutr. 9(6):733-41. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/15870822 (accessed 04.02.2013).

Kovacs, E., et al. 2004. Effects of green tea on weight maintenance after body-weight loss. Br. J. Nutr. 91, 431–437. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/15005829 (accessed 04.02.2013).

Nagao, T., et al. 2005. Ingestion of a tea rich in catechins leads to a reduction in body fat and malondialdehyde-modified LDL in men. Am J Clin Nutr. 81:122–9. URL: http://ajcn.nutrition.org/content/81/1/122.long (accessed 04.02.2013).

Rumpler W., et al. 2001. Oolong tea increases metabolic rate and fat oxidation in men. J Nutr. 2001;131:2848–52. URL: http://jn.nutrition.org/content/131/11/2848.long (accessed 04.02.2013).

Dulloo AG et al. 1999. Efficacy of a green tea extract rich in catechin polyphenols and caffeine in increasing 24-h energy expenditure and fat oxidation in humans. Am J Clin Nutr. 70(6):1040-5. URL: http://www.ajcn.org/cgi/pmidlookup?view=long&pmid=10584049 (accessed 04.02.2013).

Dulloo AG et al. 2000. Green tea and thermogenesis: interactions between catechin-polyphenols, caffeine and sympathetic activity. Int J Obes Relat Metab Disord. 24(2):252-8. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/10702779 (accessed 04.02.2013).

Alpha Lipoic Acid

Anuradha, B. & Varalakshmi, P. 199. Activities of glucose-metabolizing enzymes in experimental neurotoxic models with lipoate as an alleviator. J Appl Toxicol. 19(6):405-9. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/10547622 (accessed 04.08.2013).

Arivazhagan, P., et al. 2001 Effect of DL-alpha-lipoic acid on mitochondrial enzymes in aged rats. Chem Biol Interact. 138(2): 189-98. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/11672700 (accessed 04.08.2013).

Butler, J.A., et al. 2009. Lipoic acid improves hypertriglyceridemia by stimulating triacylglycerol clearance and downregulating liver triacylglycerol secretion. Arch Biochem Biophys. 485(1):63-71. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19232511 (accessed 04.10.2013).

Chen, W.L., et al. 2012. Alpha-lipoic acid regulates lipid metabolism through induction of sirtuin 1 (SIRT1) and activation of AMP-activated protein kinase. Diabetologia. 55(6):1824-35. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22456698 (accessed 04.10.2013).

Cheng, P.Y., et al. 2011. Reciprocal effects of alpha-lipoic acid on adenosine monophosphate-activated protein kinase activity in obesity induced by ovariectomy in rats. Menopause. 18(9): 1010-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21505371 (accessed 04.10.2013).

Femiano, F., et al. 2004. Burning Mouth Syndrome: open trial of psychotherapy alone, medication with alpha-lipoic acid (thioctic acid), and combination therapy. Med Oral. 9(1):8-13. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/14704612 (accessed 04.11.2013).

Gupte, A.A., et al. 2009. Lipoic acid increases heat shock protein expression and inhibits stress kinase activation to improve insulin signaling in skeletal muscle from high-fat-fed rats. J Appl Physiol. 106(4):1425-34. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19179648 (accessed 04.10.2013).

Kim, M. S., et al. 2004. Anti-obesity effects of alpha-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase. Nat Med. 10(7): 727-33. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15195087 (accessed 04.08.2013).

Koh, E. H., et al. 2011. Effects of alpha-lipoic acid on body weight in obese subjects. Am J Med. 124(1): 85.e1-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21187189 (accessed 04.08.2013).

Konrad, T., et al. 1999. Alpha-Lipoic acid in treatment decreases serum lactate and pyruvate concentrations and improves glucose effectiveness in lean and obese patients with type 2 diabetes. Diabetes Care. 22(2):280-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/10333946 (accessed 04.11.2013).

Lee, W.J., et al. 2005. Alpha-lipoic acid increases insulin sensitivity by activating AMPK in skeletal muscle. Biochem Biophys Res Commun. 332(3): 885-91. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15913551 (accessed 04.10.2013).

Lee, W. J., et al. 2005. Obesity: The role of hypothalamic AMP-activated protein kinase in body weight regulation. Int J Biochem Cell Biol. 37(11):2254-9. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16085448 (accessed 04.10.2013).

Lee, W.J., et al. 2005. Alpha-lipoic acid prevents endothelial dysfunction in obese rats via activation of AMP-activated protein kinase. Arterioscler Thromb Vasc Biol.25(12):2488-94. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16224049 (accessed 04.10.2013).

Mantovani, G., et al. 2006. A phase II study with antioxidants, both in the diet and supplemented, pharmaconutritional support, progestagen, and anti-cyclooxygenase-2 showing efficacy and safety in patients with cancer-related anorexia/cachexia and oxidative stress. Cancer Epidemiol Biomarkers Prev. 15(5): 1030-4. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16702388 (accessed 04.08.2013).

Marshall, A.W., et al. Treatment of alcohol-related liver disease with thioctic acid: a six month randomized double-blind trial. Gut. 23(12): 1088-93. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/6129179 (accessed 04.11.2013).

McNeilly, A.M., et al. Effect of alpha-lipoic acid and exercise training on cardiovascular disease risk in obesity with impaired glucose tolerance. Lipids Health Dis. 10:217. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/22107734 (accessed 04.11.2013).

Mijnhout, G.S., et al. 2010. Alpha lipoic acid: a new treatment for neuropathic pain in patients with diabetes?. Neth J Med.68(4): 158-62. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/20421656 (accessed 04.11.2013).

Muthuswamy, A.D., et al. 2006. Oxidative stress-mediated macromolecular damage and dwindle in antioxidant status in aged rat brain regions: role of L-carnitine and DL-alpha lipoic acid. Clin Chim Acta. 368(1): 84-92. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16480704 (accessed 04.08.2013).

Nagamatsu, M., et al. 1995. Lipoic acid improves nerve blood flow, reduces oxidative stress, and improves distal nerve conduction in experimental diabetic neuropathy. Diabetes Care. 18(8): 1160-7. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/7587852 (accessed 04.08.2013).

Packer, L., et al. 1995. Alpha-lipoic acid as a biological antioxidant. Free Radical Biology and Medicine. 19(2): 227-250. URL (abstract): http://dx.doi.org/10.1016/0891-5849(95)00017-R (accessed 04.15.2013).

Park, K.G., et al. 2008. Alpha-lipoic acid decreases hepatic lipogenesis through adenosine monophosphate-activated protein kinase (AMPK)-dependent and AMPK-independent pathways. Hepatology. 48(5): 1477-86. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18972440 (accessed 04.10.2013).

Pershadsingh, H.A. 2007. Alpha-lipoic acid: Physiologic mechanisms and indications for the treatment of metabolic syndrome. Expert Opin Investig Drugs. 16(3): 291-302. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/17302524 (accessed 04.08.2013).

Ramos, L.F., et al. 2011. Effects of combination tocopherols and alpha lipoic acid therapy on oxidative stress and inflammatory biomarkers in chronic kidney disease. J Ren Nutr. 21(3): 211-8. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21185738 (accessed 04.11.2013).

Saraswathi, R. & Devaraj, S. N. 2013. Oxidative stress in skeletal muscle impairs mitochrondrial function in alloxan induced diabetic rats: Role of alpha lipoic acid. Biomedicine & Preventive Nutrition. [Epub ahead of print]. URL (abstract): http://www.sciencedirect.com/science/article/pii/S2210523912000499 (accessed 04.15.2013).

Wiznitzer, A., et al. 1999. Lipoic acid prevention of neural tube defects in offspring of rats with streptozocin-induced diabetes. Am J Obstet Gynecol. 180(1 Pt 1): 188-93. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/9914602 (accessed 04.08.2013).

Xiao, C., et al. 2011. Short-term oral alpha-lipoic acid does not prevent lipid-induced dysregulation of glucose homeostasis in obese and overweight nondiabetic men. Am J Physiol Endocrinol Metab. 301(4): E736-41. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21750266 (accessed 04.11.2013).

Zembron-Lacny, A., et al. 2009. Assessment of the antioxidant effectiveness of alpha-lipoic acid in healthy men exposed to muscle-damaging exercise. J Physiol Pharmacol. 60(2): 139-43. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/19617657 (accessed 04.11.2013).


Arenas, J., et al. 1991. Carnitine in muscle, serum, and urine of nonprofessional athletes: effects of physical exercise, training and L-carnitine administration. Muscle Nerve. 14:598–604. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/1922166 (accessed 04.03.2013).

Benvenga, S. 2005. Effects of L-carnitine on thyroid hormone metabolism and on physical exercise tolerance. Horm. Metab. Res., 37 (9), 566-571. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/16175496 (accessed 10.25.2011).

Bremer, J. 1990. The role of carnitine in intracellular metabolism. J Clin Chem Clin Biochem. 28(5):297–301. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/2199593 (accessed 04.03.2013).

Bremer, J. 1983. Carnitine – metabolism and functions. Physiol Rev. 63(4):1420-1480. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/6361812 (accessed 04.03.2013).

Guzman-Guillen, R., et al. 2013. The protective role of l-carnitine against cylindrospermopsin-induced oxidative stress in tilapia (Oreochromis niloticus). Aquat Toxicol. 132-133C:141-150. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23501490 (accessed 04.03.2013).

Ho, J.Y., et al. 2010. L-Carnitine l-tartrate supplementation favorably affects biochemical markers of recovery from physical exertion in middle-aged men and women. Metab 59:1190–1199. URL (abstract only): http://www.ncbi.nlm.nih.gov/pubmed/20045157 (accessed 04.02.2013).

Kraemer, W., et al. 2008. L-carnitine supplementation: influence upon physiological function. Curr. Sports Med. Rep., 7 (4), 218-223. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18607224 (accessed 10.25.2011).

Kraemer, W.J., et al. 2006. Androgenic Responses to Resistance Exercise: Effects of Feeding and L-Carnitine. Med Sci Sports Exerc. 38(7):1288-1296 URL(abstract): http://www.ncbi.nlm.nih.gov/pubmed/16826026 (accessed 04.03.2013).

Kraemer, W.J., et al. 2005. L-Carnitine Supplementation: A New Paradigm for its Role in Exercise. Chemical Monthly. 136:1383–1390. URL (abstract): http://link.springer.com/content/pdf/10.1007%2Fs00706-005-0322-y#page-1 (accessed 04.03.2013).

Kraemer, W.J., et al. 2003. The effects of L-carnitine l-tartrate supplementation on hormonal responses to resistance exercise and recovery. J Strength Cond Res. 17(3):455–462. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/12930169 (accessed 04.03.2013).

LeBlanc, P.J., et al. 2004. Effects of 7 wk of endurance training on human skeletal muscle metabolism during submaximal exercise. J Appl Physiol. 97:2148–2153. URL: http://jap.physiology.org/content/97/6/2148.full (accessed 04.03.2013).

Li, J. & Yu, X.Y., 2012. [Effects of exogenous carnitine on function of respiratory chain and antioxidant capacity in mitochondria of myocardium after exhaustive running in rats]. [Article in Chinese]. Zhonggui Ying Yong Sheng Li Xue Za Zhi. 28(5):405-9. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23252290 (accessed 04.03.2013).

Nüesch, R., et al. 1999. Plasma and urine carnitine concentrations in well-trained athletes at rest and after exercise. Influence of L-carnitine intake. Drugs Exptl Clin Res 25(4):167–17. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/10442273 (accessed 04.03.2013).

Pekala, J., et al. 2011. L-Carnitine — metabolic functions and meaning in humans’ life. Curr. Drug Metab. [Epub ahead of print.] URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/21561431 (accessed 10.25.2011).

Spiering, B.A., et al. 2008. Effects of L-carnitine L-tartrate supplementation on muscle oxygenation responses to resistance exercise. J. Strength Cond Res. 22(4):1130–1135 URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18545197 (accessed 04.03.2013).

Spiering, B.A., et al. 2007. Responses of criterion variables to different supplemental doses of l-carnitine l-tartrate. J Strength Cond Res. 21(1):259–264. URL (abstract): http://journals.lww.com/nsca-jscr/Abstract/2007/02000/Responses_of_Criterion_Variables_to_Different.46.aspx (accessed 04.03.2013).

Steiber, A., et al. 2004. Carnitine: A nutritional, biosynthetic, and functional perspective. Mol Aspects Med. 25 (5-6):455–473. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/15363636 (accessed 04.03.2013).

van Loon, L.J.C., et al. 2001. The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol. 536 (1): 295–304. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/pmc2278845/ (accessed 04.03.2013).

Volek, J.S., et al. 2008. Effects of carnitine supplementation on flow-mediated dilation and vascular inflammatory responses to a high-fat meal in healthy young adults. Am J Cardiol. 102 (10):1413–1417. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/18993165 (accessed 04.03.2013).

Volek, J.S., et al. 2002. L-carnitine l-tartrate supplementation favorably affects markers of recovery from exercise stress. Am J Physiol Endocrinol Metab. 282:E474 – E482. URL: http://ajpendo.physiology.org/content/282/2/E474.full (accessed 04.03.2013).

Wall, B.T., et al. 2011. Chronic oral ingestion of L-carnitine and carbohydrate increases muscle carnitine content and alters muscle fuel metabolism during exercise in humans. J Physiol 589(4):963–973. URL: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3060373/ (accessed 04.02.2013).

Zambrano,S., et al. 2012. The renoprotective effect of L-carnitine in hypertensive rats is mediated by modulation of oxidative stress-related gene expression. Eur J Nutr. 2012 Dec 6 [Epub ahead of print]. URL (abstract): http://www.ncbi.nlm.nih.gov/pubmed/23223967 (accessed 04.03.2013).

There are currently no reviews for this item.